001     877780
005     20240610121211.0
024 7 _ |a 10.1140/epja/s10050-020-00185-x
|2 doi
024 7 _ |a 2128/26247
|2 Handle
024 7 _ |a altmetric:77734261
|2 altmetric
024 7 _ |a WOS:000554795600001
|2 WOS
037 _ _ |a FZJ-2020-02447
082 _ _ |a 530
100 1 _ |a Haidenbauer, Johann
|0 P:(DE-Juel1)131179
|b 0
|e Corresponding author
245 _ _ |a Predictions for charmed nuclei based on $Y_c N$ forces inferred from lattice QCD simulations
260 _ _ |a Heidelberg
|c 2020
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1617693762_21066
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Charmed nuclei are investigated utilizing ΛcN and ΣcN interactions that have been extrapolated from lattice QCD simulations at unphysical masses of mπ=410–570 MeV to the physical point using chiral effective field theory as guideline. Calculations of the energies of Λc single-particle bound states for various charmed nuclei from 5ΛcLi to 209ΛcBi are performed using a perturbative many-body approach. This approach allows one to determine the finite nuclei Λc self-energy from which the energies of the different bound states can be obtained. Though the ΛcN interaction inferred from the lattice results is only moderately attractive, it supports the existence of charmed nuclei. Already the lightest nucleus considered is found to be bound. The spin-orbit splitting of the p- and d-wave states turns out to be small, as in the case of single Λ hypernuclei. Additional calculations based on the Faddeev-Yakubovsky equations suggest that also A=4 systems involving a Λc baryon are likely to be bound, but exclude a bound 3ΛcHe state.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|x 0
|f POF III
536 _ _ |a DFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)
|0 G:(GEPRIS)196253076
|c 196253076
|x 1
536 _ _ |a Chiral dynamics in Few-Baryon Systems (jikp03_20190501)
|0 G:(DE-Juel1)jikp03_20190501
|c jikp03_20190501
|x 2
|f Chiral dynamics in Few-Baryon Systems
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Nogga, Andreas
|0 P:(DE-Juel1)131273
|b 1
700 1 _ |a Vidaña, Isaac
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1140/epja/s10050-020-00185-x
|g Vol. 56, no. 7, p. 195
|0 PERI:(DE-600)1459066-9
|n 7
|p 195
|t The European physical journal / A
|v 56
|y 2020
|x 0939-7922
856 4 _ |u https://juser.fz-juelich.de/record/877780/files/Haidenbauer2020_Article_PredictionsForCharmedNucleiBas.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/877780/files/Haidenbauer2020_Article_PredictionsForCharmedNucleiBas.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:877780
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131179
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131273
913 1 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-02-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J A : 2018
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-27
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 0
920 1 _ |0 I:(DE-Juel1)IKP-3-20111104
|k IKP-3
|l Theorie der starken Wechselwirkung
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 _ _ |a I:(DE-Juel1)IKP-3-20111104
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21