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Abstract Charmed nuclei are investigated utilizing ΛcN
and ΣcN interactions that have been extrapolated from lattice
QCD simulations at unphysical masses of mπ = 410–570
MeV to the physical point using chiral effective field theory as
guideline. Calculations of the energies of Λc single-particle
bound states for various charmed nuclei from 5

Λc
Li to 209

Λc
Bi

are performed using a perturbative many-body approach.
This approach allows one to determine the finite nuclei Λc

self-energy from which the energies of the different bound
states can be obtained. Though the ΛcN interaction inferred
from the lattice results is only moderately attractive, it sup-
ports the existence of charmed nuclei. Already the lightest
nucleus considered is found to be bound. The spin-orbit split-
ting of the p- and d-wave states turns out to be small, as in
the case of single Λ hypernuclei. Additional calculations
based on the Faddeev-Yakubovsky equations suggest that
also A = 4 systems involving a Λc baryon are likely to
be bound, but exclude a bound 3

Λc
He state.

1 Introduction

The prospect of an ample production of baryons with charm
offered by facilities such as the LHC at CERN [1–3], RHIC
at BNL [4], J-PARC and KEK in Japan [5,6], or FAIR in Ger-
many [7–9] has led to a renewed interest in the in-medium
properties of such baryons [10–13] and also in the ques-
tion whether they, and notably the lightest charmed baryon,
the Λc(2286), could form bound states with ordinary mat-
ter [14–19]. In fact, there is a long history of speculations
about possible bound systems involving the Λc [20–36] that
started soon after the discovery of charmed baryons [37,38]
(see also the recent reviews [39,40]). In principle, charmed
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nuclei could be produced by means of charm exchange or
associate charm production reactions [41,42], in analogy to
the ones widely used in hypernuclear physics. However, the
experimental production of charmed nuclei is difficult due to
the short lifetimes of D-meson beams which makes it neces-
sary to place the target as close as possible to the D-meson
production point, and due to the kinematics of the reactions:
the charmed particles are formed with large momentum mak-
ing their capture by a target-nucleus improbable. Because of
these difficulties, up to now, only three albeit controversial
candidates have been reported by an emulsion experiment
carried out in Dubna in the mid-1970s [43–47].

The ΛcN forces employed in the past investigations were
predominantly derived within the meson-exchange frame-
work, see Refs. [14,17] for recent examples, often utilizing
SU(4) flavor symmetry in one form or the other. Lately, also
the constituent quark model [48] or a combination of meson-
exchange and quark model [16] have been considered. Inde-
pendently of that, in general, the resulting potentials turned
out to be fairly attractive. Interestingly, a rather different pic-
ture emerged from recent lattice QCD (LQCD) simulations
by the HAL QCD collaboration [49,50]. Those studies, based
on unphysical quark masses corresponding to pion masses of
mπ = 410–700 MeV, suggest that the ΛcN and ΣcN interac-
tions could be significantly less attractive than what had been
proposed in the phenomenological studies mentioned above.
In Ref. [51], an extrapolation of the HAL QCD results to
the physical point was presented, using chiral effective field
theory (EFT) [52,53] as guideline. It revealed that the ΛcN
interaction at the physical point is expected to be somewhat
stronger than for large pion masses, however, still only mod-
erately attractive and, specifically, considerably less attrac-
tive than most of the phenomenological predictions for the
ΛcN interaction.
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In the present work, we use the ΛcN interaction from Ref.
[51] to explore the binding energies of charmed nuclei. In the
literature different conventions for naming Λc nuclei have
been used in the past. We adopt here the standard nomencla-
ture for nuclei with the proper generalization [30], spelled out
for hypernuclei in Sect. I.B of Ref. [54]. It takes into account
that the characterizing letter(s) for the nucleus depends on its
total charge and not just on the number of protons. For exam-
ple, when adding the (uncharged) Λ to hydrogen (2H) one
gets the hypertriton (3

ΛH) but adding the positively charged
Λc leads to 3

Λc
He. Similarly, based on this convention, the

bound state of Λc and 208Pb is 209
Λc

Bi.
The lightest nuclei considered, the A = 3 and A = 4

systems 3
Λc

He and 4
Λc

He, are investigated by solving cor-
responding Faddeev–Yakubovsky equations. Indeed, for the
three-body system, bound states have been reported in Ref.
[16] (with total angular momentum J = 1/2 and 3/2) and
Ref. [15] (for J = 3/2). Note, however, that some of the ΛcN
interactions employed in Ref. [16] are so strongly attrac-
tive that they even predict two-body bound states (in the 1S0

as well as in the 3S1 partial wave) with binding energies
comparable to that of the deuteron. For calculating heavier
charmed nuclei, namely from 5

Λc
Li onward to 209

Λc
Bi, a per-

turbative many-body approach is utilized that allows one to
obtain the Λc single-particle bound states in the different
nuclei from the corresponding Λc self-energy. Results for
charmed nuclei computed within this framework have been
reported recently in Ref. [17], for a set of YcN interactions
deduced from an early version [55] of the hyperon–nucleon
(Y N ) meson-exchange potential of the Jülich Group [56] via
SU(4) symmetry arguments. For these interactions, the 5

Λc
Li

system ( 5
Λc

He in the nomenclature used in Ref. [17]) turned
out to be already bound. In this context, let us mention that
the HAL QCD collaboration has likewise reported results for
charmed nuclei [49]. The calculations were performed with
the ΛcN potentials extracted from the lattice simulations at
pion masses 410–700 MeV, but using the physical masses
of the Λc and the considered nuclei. Binding energies for
Λc bound to 12C, 28Si, 40Ca, 58Na, 90Zr, and 208Pb were
reported.

Since after the publication of the ΛcN interaction [51]
new results from the HAL QCD collaboration became avail-
able that include now the ΣcN channel [50], we also revisit
the ΛcN interaction in order to explore in how far the inclu-
sion of a direct interaction in the ΣcN channel modifies the
extrapolation of the ΛcN interaction from the results/masses
of the lattice simulations to the physical point, and in how far
it influences the predictions for charmed nuclei. It turns out
that adding/considering the interaction in the ΣcN channel
has very little influence on the ΛcN scattering results and also
not on those for Λc nuclei. May be this is not too surprising
in view of the fact that the thresholds of the two channels are

separated by almost 170 MeV. In any case, for completeness,
we report predictions for the ΣcN S-wave phase shifts based
on our extrapolation of the HAL QCD results [50].

Another extrapolation of the lattice results for ΣcN , per-
formed in heavy baryon chiral perturbation theory and taking
into account heavy quark spin symmetry, has been performed
recently [57]. Let us mention already now that neither in
that work nor in our calculation any signal for resonances or
bound states in the ΣcN channel are found. The existence
of such resonances has been suggested in Ref. [58], where
the ΛcN–ΣcN–Σ∗

c N interaction was investigated within
the framework of the quark delocalization color screening
model. Bound states (and resonances) in the ΣcN 3S1 partial
wave around the ΣcN and Σ∗

c N thresholds were also pre-
dicted in Ref. [59] based on a YcN interaction from meson
exchange supplemented by short-range repulsion from a
quark exchange model.

The paper is structured in the following way: a summary
of the main characteristics of the ΛcN and ΣcN poten-
tials is presented in Sect. 2. Results of the properties of Λc

in infinite nuclear matter, and light and heavier nuclei are
reported in Sect. 3. Finally, a brief summary and some con-
cluding remarks are given in Sect. 4. The appendix summa-
rizes results for ΣcN scattering.

2 The ΛcN and ΣcN potentials

The ΛcN and ΣcN interactions are constructed by using chi-
ral EFT as guideline, following the scheme employed in our
studies of the ΛN and ΣN systems [60–63]. We summa-
rize the essentials below. More details of the approach can
be found in Ref. [51]. The YcN potential consists of contact
terms and contributions from pion exchange. The former are
given by

V (1S0) = C̃1S0
+ D̃1S0

m2
π + (C1S0

+ D1S0
m2

π ) (p2 + p′2),
V (3S1) = C̃3S1

+ D̃3S1
m2

π + (C3S1
+ D3S1

m2
π ) (p2 + p′2),

V (3D1 − 3S1) = Cε1 p′2,
V (3S1 − 3D1) = Cε1 p2, (1)

for the partial waves considered in the present study. Here
p = |p | and p′ = |p ′| are the initial and final center-of-mass
(c.m.) momenta in the ΛcN or ΣcN systems. The quantities
C̃i , D̃i ,Ci , Di are low-energy constants (LECs) that are fixed
by a fit to lattice data (phase shifts) by the HAL QCD collabo-
ration at mπ = 410 MeV and 570 MeV. The mπ dependence
in Eq. (1) is motivated by the corresponding expression in
the standard Weinberg counting up to next-to-leading order
(NLO) [52,53] but differs from it by the term proportional
to m2

π (p2 + p′2) which is nominally of higher order. Never-
theless, we included that term in Ref. [51] because it allowed
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us to obtain an optimal description of the LQCD results at
mπ = 410 MeV as well as 570 MeV. We consider this as
a prerequisite for a well constrained extrapolation to lower
pion masses. Without such a term the phase shifts by HAL
QCD for mπ = 410 MeV would be underestimated at low
energies, as exemplified by results shown in Figs. 6 and 7 of
Ref. [57].

The contribution of pion exchange to the YcN potential is
given by

V OPE
YcN→Y ′

cN
= − fYcY ′

cπ
fN Nπ

(σ1 · q) (σ2 · q)

q 2 + m2
π

, (2)

where q is the transferred momentum, q = p′ − p. The cou-
pling constants fBB′π are related to the axial-vector strength
via fBB′π = gBB′

A /2Fπ with Fπ being the pion decay con-
stant (Fπ ≈ 93 MeV). The coupling constant for the ΛcΣcπ

vertex can be determined from the experimentally known
Σc → Λcπ decay rate, see Refs. [64,65]. For the ΣcΣcπ

coupling constant lattice QCD results [66] are employed.
To be concrete, gΣcΣc

A = 0.71 [66] and gΛcΣc
A = 0.74

[64,65] are used, together with gNN
A = 1.27 [67]. Note that

fΛcΛcπ ≡ 0 under the assumption that isospin is conserved.
Besides the coupling constants at the physical point, one

needs also their mπ dependence:

fBB′π (m2
π ) = gBB′

A (m2
π )

2 Fπ (m2
π )

. (3)

Results for the dependence of Fπ on m2
π are available

from lattice simulations [68]. Based on that work the val-
ues Fπ ≈ 112 MeV at mπ = 410 MeV and Fπ ≈ 129
MeV at mπ = 570 MeV were deduced and employed in
Ref. [51]. With regard to the dependence of gBB

′
A on m2

π

lattice QCD simulations indicate a rather small variation, at
least for gΣcΣc

A and gNN
A where concrete results are available

[66,69]. Because of that the dependence of the gA’s on mπ

was neglected in Ref. [51] and the values at the physical point
were used throughout.

There was no information from LQCD on the ΣcN inter-
action at the time when the study in Ref. [51] was per-
formed, and, thus, the interaction in the ΣcN channel was not
considered. Nonetheless, the coupling of ΛcN to ΣcN via
pion exchange was already included. Due to its long-range
nature, this coupling plays an important role in case of the
ΛN and ΣN systems [61,62]. Since fΛcΣcπ is empirically
known and only slightly smaller than fΛΣπ [61] the cou-
pling between ΛcN and ΣcN via pion exchange should still
be of relevance. Indeed, the effective contribution to the ΛcN
interaction, VΛcN→ΛcN ∼ V OPE

ΛcN→ΣcN
GΣcN V OPE

ΣcN→ΛcN
, is

expected to be smaller for energies around the ΛcN thresh-
old as compared to the situation for ΛN , but just by a fac-
tor 2-3. The reduction is due to the larger mass difference,

MΣc − MΛc ≈ 167 MeV versus MΣ − MΛ ≈ 78 MeV,
that enters in the corresponding Green’s functions GΣcN or
GΣN . In any case, formally two-pion exchange contribu-
tions to the ΛcN interaction involving the Σc do arise at
NLO [61], and it can be expected that the piece with a ΣcN
intermediate state provides the dominant contribution [70].
In the actual calculation, this (reducible) two-pion exchange
contribution to the ΛcN potential is generated by solving
a coupled-channel Lippmann–Schwinger (LS) equation (see
below). Further (irreducible) NLO contributions from two-
pion exchange [61] have been omitted in [51] for simplicity
reasons. It was assumed that those can be effectively absorbed
into the contact terms.

For the present study, we add a direct ΣcN interaction.
The potential is determined in the same way as the one for
ΛcN , by using results of the HAL QCD collaboration for the
corresponding 3S1 phase shift at mπ = 410 MeV and 570
MeV [50]. The main goal of this extension is to explore in
how far the inclusion of a direct ΣcN interaction modifies
the ΛcN results achieved earlier. Of particular interest is the
question, whether it influences the results for charmed nuclei
that we are concerned with here. Results for ΣcN scattering
itself are discussed and summarized in the appendix.

The reaction amplitudes are obtained from the solution of
a coupled-channel LS equation for the interaction potentials.
After partial-wave projection [60], the equation is given by

T ν′ν,J
ρ′ρ (p′, p;√

s) = V ν′ν,J
ρ′ρ (p′, p)

+
∑

ρ′′,ν′′

∫ ∞

0

dp′′ p′′2

(2π)3 V ν′ν′′,J
ρ′ρ′′ (p′, p′′)

× 2μρ′′

p2
ρ′′ − p′′2 + iη

T ν′′ν,J
ρ′′ρ (p′′, p;√

s) , (4)

where the label ρ indicates the channels (ΛcN , ΣcN ) and the
label ν the partial wave. The quantity μρ signifies the per-
tinent reduced mass. The on-shell momentum in the inter-
mediate state, pρ , is defined by

√
s =

√
M2

B1,ρ
+ p2

ρ +
√
M2

B2,ρ
+ p2

ρ .

Since the integral in the LS equation (4) is divergent
for the chiral potentials specified above, a regularization
scheme needs to be introduced [71,72]. For that purpose
the potentials in the LS equation are cut off in momentum
space by multiplication with a regulator function [60,61],
f (p′, p) = exp

[− (
p′4 + p4

)
/Λ4

]
. In Ref. [51], cutoff val-

ues Λ = 500–600 MeV were employed, in line with the
range that yielded the best results in NLO studies of the ΛN
and ΣN interactions [61,62] and in comparable investiga-
tions of NN scattering [73]. For a more detailed discussion
on this topic in the context of the employed ΛcN interaction
see Ref. [51], where also further references on the issue of
regularization can be found. The variations of the results with
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the cutoff, reflecting uncertainties due to the regularization,
will be indicated by bands.

The baryon masses corresponding to the LQCD simula-
tions at mπ = 410 and 570 MeV are taken from Ref. [49].
For the calculation at the physical point, we use the masses
MN = 938.92 MeV, MΛc = 2286.5 MeV, and MΣc = 2455
MeV.

3 Λc nuclei and matter properties

In this section, we report results on the properties of the Λc

in infinite nuclear matter and on charmed nuclei. In the perti-
nent calculations, we employ YcN interactions extrapolated
from results of lattice simulations by the HAL QCD collab-
oration [49,50] to the physical point. In particular, we use
the ΛcN potential from Ref. [51], where there is no direct
ΣcN interaction, and the two potentials YcN -A and YcN -B,
introduced and described in the appendix, which include a
direct ΣcN interaction.

3.1 Λc in infinite nuclear matter

In order to investigate the properties of the ΛcN interaction
in nuclear matter, we perform a Brueckner–Hartree–Fock
calculation where we adopt the so-called discontinuous pre-
scription when solving the Bethe–Goldstone equation. We
follow closely our corresponding calculation for the ΛN
interaction [74]. In that work and similar ones (see, e.g.,
Refs. [75,76]), the reader can find details how to solve the
Bethe–Goldstone equation and how the single-particle (s.p.)
potential UΛc is determined self-consistently together with
the G-matrices for a specific nuclear matter density ρ (or
Fermi momentum kF ).

In Fig. 1a, we present results for the dependence of
UΛc (kΛc = 0) on the Fermi momentum, in comparison to
those for the Λ hyperon obtained with the NLO interaction
from Refs. [61,62]. In Fig. 1b, we display the dependence
of UΛc(kΛc) and the s.p. energy, εΛc (kΛc) = k2

Λc
/2mΛc +

UΛc (kΛc), on the Λc momentum at the Fermi momentum
kF = 1.35 fm−1, i.e., at nuclear matter saturation density.
The in-medium predictions for Λc are based on the YcN -A
potential (cf. appendix). Results for the Λc properties for the
alternative fit YcN -B, considered in the appendix, and for the
ΛcN potential from Ref. [51] practically coincide with the
ones for YcN -A and are therefore not shown.

Partial-wave contributions to UΛc(kΛc = 0) at kF =
1.35 fm−1 are listed in Table 1. Note that the contributions
of the P waves come solely from two-pion exchange involv-
ing the ΣcN intermediate state. The total potential depth
amounts to around −20 ÷ −18 MeV and is quite insensitive
to whether a direct ΣcN interaction is included or not. As a
reminder, the “empirical” value in case of the Λ hyperon is
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Fig. 1 Λc in symmetric nuclear matter. Top: the Λc s.p. potential
UΛc (kΛc = 0) as a function of the Fermi momentum kF in compar-
ison to UΛ(kΛ = 0) [62] (NLO13 with dash-dotted border; NLO19
with dashed border) for cutoff variations Λ = 500–600 MeV. Bottom:
momentum dependence of UΛc (solid band) and εΛc (hatched band) at
the Fermi momentum kF = 1.35 fm−1

−30 ÷ −27 MeV [54]. Comparing the Λc results with the
Λ case in detail, one can see that the contribution in the 1S0

partial wave is reduced by roughly a factor three. This is well
in line with the corresponding interaction strengths; the ΛcN
scattering length is also about a factor three smaller than that
for ΛN , see Table 1. For the 3S1 partial wave the ΛcN and
ΛN contributions (for NLO13 [61]) are of comparable mag-
nitude, despite of the fact that the ΛcN interaction is less
attractive as reflected in the corresponding scattering lengths
which is about 30–50 % smaller than that for ΛN scatter-
ing. Obviously, for ΛcN the dispersive effects, which play an
important role for the contribution of that partial wave in case
of the Λ [62], are smaller because the ΛcN–ΣcN coupling is
weaker due to a weaker transition potential and/or due to the
larger threshold separation. Apparently, that reduced effect
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Table 1 ΛcN scattering lengths (in fm) and partial-wave contributions
to the s.p. potentialUΛc (kΛc = 0) (in MeV) at kF = 1.35 fm−1. Results
are shown for the YcN -A potential which includes a direct ΣcN inter-
action (cf. appendix), and for the ΛcN interaction from Ref. [51]. The

cutoff values used (Λ = 500, 600 MeV) are indicated in brackets. For
comparison corresponding results for the ΛN interactions NLO13 [61]
and NLO19 [62] are given

Interaction a1S0
a3S1

UΛc (UΛ) Total
1S0

3S1 +3 D1
3P0

1P1
3P1

3P2 +3 F2

ΛcN ΛcN (500) [51] − 0.85 − 0.81 − 5.1 − 13.7 − 0.4 0.0 − 0.3 − 0.2 − 19.8

YcN -A(500) − 0.85 − 0.79 − 5.1 − 13.5 − 0.4 0.0 − 0.3 − 0.2 − 19.7

ΛcN (600) [51] − 1.00 − 0.98 − 5.5 − 12.9 1.4 0.0 − 0.5 − 0.4 − 18.0

YcN -A(600) − 1.00 − 0.91 − 5.5 − 12.4 1.4 0.0 − 0.5 − 0.4 − 17.6

ΛN NLO13 (500) − 2.91 − 1.61 − 15.3 − 14.6 1.1 0.3 1.8 − 1.3 − 28.3

NLO19 (500) − 2.91 − 1.52 − 12.5 − 28.0 1.1 0.3 1.8 − 1.2 − 39.3

NLO13 (600) − 2.91 − 1.54 − 12.3 − 10.9 0.9 0.3 1.7 − 1.1 − 21.6

NLO19 (600) − 2.91 − 1.41 − 11.2 − 22.8 0.9 0.4 1.7 − 1.1 − 32.6

compensates for the somewhat less attractive ΛcN interac-
tion. When comparing with the results for the NLO interac-
tion from 2019 [62], where the ΛN–ΣN transition potential
is noticeably weaker, one sees a clear correlation between the
smaller 3S1 scattering length and the reduced contribution to
UΛc (cf. Table 1).

Finally, let us compare our nuclear matter results with
other predictions for UΛc found in the literature. Reference
[31] contains some results for UΛc based on an YcN poten-
tial that is adapted from one of the Y N meson-exchange
potentials by the Nijmegen Group by imposing SU(4) flavor
symmetry. In that work, a value of UΛc (kΛc = 0) ≈ −25
MeV at nuclear matter saturation density has been found.
However, note the large contributions from P waves in that
study. The two S wave alone yield only around −3.5 MeV. A
study utilizing parity-projected QCD sum rules [10] reports
a potential depth of ∼ −20 MeV for Λc at nuclear matter
saturation density. Yasui, in a perturbative approach based on
a heavy-quark effective theory, finds a Λc binding energy of
around −25 ÷ −20 MeV in nuclear matter [13]. Though
to some extent surprising, it is interesting to see that the
achieved results are all fairly similar, despite of the differ-
ent interactions and approaches employed.

3.2 3
Λc

He and 4
Λc

He systems

For A = 3 and 4 charmed nuclei, Faddeev–Yakubovsky cal-
culations are performed in the same way as in former studies
of hypernuclei [62,77,78]. As discussed in Ref. [51], based
on the results for Λ-hypernuclei and the relative strengths
of the ΛcN and ΛN interactions, one can guess which light
charmed nuclei could be bound. For that the pertinent mix-
tures of the spin-singlet and spin-triplet ΛcN (ΛN ) interac-
tion for s-shell nuclei are relevant [62,79] and, of course, the
reduction of the kinetic energy associated with the Λc as a
consequence of its larger mass [30]. In view of the fact that,

for the considered YcN interactions, the ΛcN 1S0 scattering
length is only one third of the one for ΛN , while there is
somewhat less difference in the 3S1 state (cf. Table 1), bind-
ing of light systems is expected to be mainly possible for
charmed nuclei with a dominating spin-triplet ΛcN contri-
bution, i.e. 3

Λc
He (J = 3

2
+

), 4
Λc

He (1+), and 5
Λc

Li [62,77,79].
Additionally, whereas the Coulomb interaction is of less

importance for Λ separation energies of hypernuclei, its con-
tribution to Λc separation energies of charmed nuclei is often
decisive for binding [30]. For the solution of the Faddeev–
Yakubovsky equations here, we take the Coulomb interac-
tions fully into account as described in Ref. [80].

First, in order to benchmark our few-body calculations,
we devised ΛcN interactions that mimic the effective range
parameters predicted by a ΛcN potential obtained in the con-
stituent quark model by Garcilazo et al. [48]. In that model,
the triplet interaction is much stronger (a3S1

= −2.31 fm)
than the one in the singlet channel (a1S0

= −0.86 fm), cf.
Table 3 in that reference. Consequently, and in line with the
above arguments and the explorations in Ref. [77], a bound
state for the J = 3

2 state of 3
Λc

He has been reported, with
a Λc separation energy of approximately 140 keV includ-
ing Coulomb [15]. Since our interactions do not reproduce
the phase shifts of the quark model perfectly over a larger
energy region, we use two different realizations with cutoff
600–700 MeV. We find separation energies between 60 keV
and 264 keV. This includes a variation of 60 keV due to
different NN interactions. The uncertainty due to different
cutoffs of the ΛcN interaction is larger than the one due to
different NN interactions. We also found that no bound state
exists for that interaction for 3

Λc
He with J = 1

2 . This result
confirms the earlier calculations of Garcilazo et al. [48].

We then performed calculations for the ΛcN potentials
from Ref. [51], and the interactions YcN -A and YcN -B of
this work. Since all of these potentials predict a consider-
ably weaker interaction in the 3S1 partial wave, none of the
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charmed A = 3 nuclei are found to be bound. This remains
even true when the Coulomb interaction is not taken into
account.

Note that model 4 employed by Gibson et al. [30] has ΛcN
1S0 and 3S1 scattering lengths close to those of the YcN inter-
actions considered by us. No bound state for A = 3 was found
in that work, but a bound 4

Λc
He with a Λc separation energy

of approximately 1.25 MeV was predicted, after including
an estimate for the contribution of the Coulomb interaction.

The A = 4 results for the interactions considered in the
present work are summarized in Tables 2 and 3. In all of our
calculations, we found that the J = 1+ state is more bound
than the J = 0+ state. This differs from the situation for
strangeness ( 4

ΛHe) where the J = 0+ state is more strongly
bound [62]. The opposite behavior is due to differences in the
relative strength of the spin-singlet and triplet interactions.
Specifically, since the spin-singlet interaction is much weaker
in the ΛcN potential inferred from LQCD [51] as compared
to that for theΛN system [62], nuclei which are dominated by
the spin-triplet interaction, like 4

Λc
He with J = 1+, are more

likely to be bound. For a general discussion of the role of the
spin dependence for s-shell hypernuclei see Refs. [62,79].

As obvious from Table 2, the results are very independent
on whether the direct ΣcN interaction has been included or
omitted. The cutoff of the YcN interactions has a much larger
effect on the energies than the inclusion of the direct inter-
action. Even more striking is the observation that the results
for A = 4 are identical for the potentials YcN -A and YcN -B.
This shows unmistakably the insensitivity of the predicted
bound-state properties on the ΣcN channel. The separation
energies for the J = 1+ state are between 100 keV and
370 keV, a clear evidence that A = 4 charmed nuclei could be
bound. The binding energies are, however, somewhat smaller
than predicted in Ref. [30]. We believe that this is partly due
to omitting tensor interactions in the YcN in Ref. [30] which
is fully taken into account in our calculations. For compar-
ison, we have also used the interactions that simulate the
quark-model potential of Ref. [48]. This interaction clearly
provides stronger binding leading to 1.2–2.1 MeV separation
energy depending on the cutoff used.

A few properties of the resulting wave functions are sum-
marized in Tables 2 and 3, too. First of all, it is interesting
to compare the expectation value of the Hamiltonian to the
energy. For the numerical calculations, we need to restrict the
number of partial waves. The most significant restriction is
that the algebraic sum of all orbital angular momenta is less
or equal 8. We checked that the solution of the Yakubovsky
equations is converged such that the energy E is accurate to
approximately 10 keV. The expection values differ at most by
20 keV. The slightly larger differences is due to a slower con-
vergence of the wave functions compared to the Yakubovsky
components. The good agreement of both numbers is a con-
firmation of the consistency of the numerical calculation. We

also show separate expectation values of the kinetic energy,
the NN potential energy and the YcN potential energy. It
sticks out that the NN potential energy is very similar for all
considered bound states. Clearly, the nuclear core is not very
much distorted by the presence of the charmed hyperon. The
expectation value of the YcN interaction is mainly dependent
on the cutoff of the interaction and less sensitive to the ΣcN
contribution as can be seen from the similarity of the results
of ΛcN [51], YcN -A and YcN -B.

Finally, we give probabilities for the total orbital angu-
lar momentum of 0 and 2 P(S) and P(D). P-waves and
F-waves only give a negligible contribution. Obviously, the
tensor components of the NN and YcN interactions induce a
D-wave contribution of approximately 7%. The probability
to find a Σc is, similar to the Σ in ordinary hypernuclei, small
and depends strongly on the cutoff of the YcN interaction.

The outcome for the J = 0+ state is compiled in Table 3.
In this case, we do not find a bound 4

Λc
He for the interac-

tions with a cutoff of 500 MeV. Such a state is however close
to being bound as can be seen from the expectation values
based on an approximate solution of the Yakubovsky equa-
tion, cf. Table 3. Also for the larger cutoff, the Λc separation
energy is only 100–180 keV. Therefore, for our interactions,
we can neither confirm nor exclude the existence of a 0+
bound state. We note that we do find a bound 0+ state for the
interactions that simulate the quark model potential of Ref.
[48]. In that case the separation energy is between 130 and
470 keV depending on the cutoff used.

Given that the dependence on the NN interaction was
smaller than the variation with the employed regulator in
the YcN interaction for A = 3, we refrain from repeating
the computationally very expensive A = 4 calculations for
different NN interactions. We do not expect that the results
will be significantly different for other choices.

3.3 Heavier charmed nuclei

Now we consider the energy of the Λc single-particle bound
states in heavier nuclei. To such end, we follow a perturbative
many-body approach whose starting point is a nuclear matter
G-matrix derived from the bare YcN interactions described
in Sect. 2 and the appendix. This G-matrix is then used to cal-
culate the self-energy of the Λc in the finite nucleus. Solving
the Schrödinger equation with this self-energy, finally, we
are able to determine the energies of all the single-particle
bound states of the Λc in the nucleus. This approach also pro-
vides the real and imaginary parts of the Λc optical potential
at positive energies and, therefore, allows one to study the
Λc-nucleus scattering properties. This method was already
used to study the properties of the nucleon [82], the Δ isobar
[83] and the Λ and Σ hyperons [84–86] in finite nuclei, and
very recently also those of the Λc using a meson-exchange
YcN interaction [17]. A comprehensive description of the
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Table 2 Λc separation energies EΛc and binding energies with respect
to breakup up into four baryons, E , for the J = 1+ state of 4

Λc
He.

The NN interaction at order N4LO+ with a cutoff of 450 MeV of Ref.
[81] was used leading to E(3H) = −8.141 MeV. Expectation values
for the kinetic energy 〈T 〉, the NN potential energy 〈VNN 〉, and the

YcN potential energy 〈VYcN 〉 are also given. The probability that the
four-baryon state has orbital angular momentum zero and two ( P(S)

and P(D) ) is listed together with the probability P(Σc) for the Σc
component. Energies are given in MeV and probabilities in %

Interaction EΛc E 〈H〉 〈T 〉 〈VNN 〉 〈VYcN 〉 P(S) P(D) P(Σc)

ΛcN (500) [51] 0.13 − 8.27 − 8.26 36.82 − 42.51 − 2.58 93.21 6.75 0.21

YcN -A(500) 0.11 − 8.25 − 8.25 36.65 − 42.50 − 2.39 93.22 6.73 0.19

YcN -B(500) 0.11 − 8.25 − 8.25 36.65 − 42.50 − 2.39 93.22 6.73 0.19

ΛcN (600) [51] 0.37 − 8.51 − 8.50 39.71 − 42.52 − 5.69 92.81 7.13 0.46

YcN -A(600) 0.30 − 8.44 − 8.43 39.15 − 42.51 − 5.07 92.88 7.06 0.39

YcN -B(600) 0.30 − 8.44 − 8.43 39.15 − 42.51 − 5.07 92.88 7.06 0.39

Table 3 Same as Table 2 for the J = 0+ state of 4
Λc

He

Interaction EΛc E 〈H〉 〈T 〉 〈VNN 〉 〈VYcN 〉 P(S) P(D) P(Σc)

ΛcN (500) [51] – – − 8.08 34.54 − 42.51 − 0.11 93.39 6.57 0.01

YcN -A(500) – – − 8.12 35.30 − 42.55 − 0.86 93.33 6.63 0.09

YcN -B(500) – – − 8.12 35.30 − 42.55 − 0.86 93.33 6.63 0.09

ΛcN (600) [51] 0.18 − 8.32 − 8.30 39.21 − 42.67 − 4.84 92.99 6.95 0.47

YcN -A(600) 0.10 − 8.25 − 8.23 38.17 − 42.57 − 3.83 93.09 6.85 0.34

YcN -B(600) 0.10 − 8.25 − 8.23 38.17 − 42.57 − 3.83 93.09 6.85 0.34

method can be found in these works and the interested reader
is referred to any of them for details.

Results for 5
Λc

Li, 13
Λc

N , 17
Λc

F, 41
Λc

Sc, 91
Λc

Nb and 209
Λc

Bi are
summarized in Table 4 for the ΛcN interaction from Ref.
[51] and the two potentials YcN -A and YcN -B with inclusion
of a direct ΣcN interaction. We note that all charmed nuclei
considered consist of a closed-shell nuclear core plus a Λc sit-
ting in a single-particle state. We note also that, although the
ΛcN interaction with the cutoff 600 MeV is more attractive,
the Λc single-particle bound states predicted in this case are
actually less bound. This is due to dispersive effects [87–89]
in the calculation of the G-matrix which suppress the con-
tribution from the ΛcN → ΣcN → ΛcN coupling. That
coupling is significantly larger for the 600 MeV cutoff and,
accordingly, likewise the reduction of the overall attraction.
Before analyzing the results, we would like to point out that,
as discussed in Ref. [90], the approach followed tends to
underestimate the energies of the Λ hyperon single-particle
bound states for light hypernuclei such as 5

ΛHe. Accordingly,
we expect 5

Λc
Li to be somewhat more strongly bound than

what is suggested by the values given in Table 4.
It is interesting to observe that, contrary to single-Λ hyper-

nuclei where the Λ is more and more bound when going from
light to heavy nuclei, the binding energy of the Λc increases
from 5

Λc
Li to 41

Λc
Sc and then it decreases. This is due to the

Coulomb repulsion between the Λc and the protons of the
nuclear core, which together with the kinetic energy of the
Λc, compensates most of the attraction of the ΛcN interac-

tion. The possible existence of Λc nuclei is, therefore, subject
to a delicate balance between the ΛcN interaction, the kinetic
energy and the Coulomb force as it has been already pointed
out in Refs. [17,33,34,49,91]. In particular, in Ref. [49] it
was suggested that only light- or medium-mass Λc nuclei
could really exists whereas, for instance, in Ref. [17] it was
found that even the heavier Λc nucleus considered in that
work, namely 209

Λc
Bi, could exist, as in the present work. A

small spin-orbit splitting of the p− and d−wave states of the
order of a few tenths of MeV is observed in all Λc nuclei in
agreement with the results obtained in Refs. [17,33–35,91].
In addition, we note also that the level spacing of the Λc

single-particle states is smaller than those for the correspond-
ing hypernuclei (see e.g. Table I of Ref. [86]). This is simply
due to the fact that the mass of the Λc is larger than that of
the Λ hyperon.

To understand better the role of the Coulomb force in our
calculation, in Fig. 2 we show the separate contributions of
the kinetic energy, of theYcN interaction, and of the Coulomb
potential to the energy of the Λc single-particle bound state
1s1/2 for the different charmed nuclei considered in this work
as function of the mass number (A = N + Z , with N and Z
being the neutron and atomic numbers, respectively, of the
specific nucleus). When going from light to heavy Λc nuclei,
the Coulomb contribution increases because of the increase
of the atomic number whereas those of the kinetic energy
and of the YcN interaction decrease. The contribution of the
kinetic energy decreases with the mass number because the
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Table 4 Energy of Λc single-particle bound states (in MeV) of several
charmed nuclei from 5

Λc
Li to 209

Λc
Bi. For convenience the corresponding

core nucleus is indicated in brackets. Results are shown for two values
of the cutoff, Λ = 500, 600 MeV
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Fig. 3 Λc probability density distribution for the 1s1/2 state in the six
Λc nuclei considered. Results are presented for the YcN -A potential.
The variation with the cutoff is indicated by bands. The red bands show
the results when the Coulomb interaction is artificially switched off.
Note that different scales are used for the heavier nuclei

wave function of the 1s1/2 state becomes more and more
spread due to the larger extension of the nuclear density over
which the Λc wants to be distributed (see Fig. 3). The increase
of the mass number leads to a more attractive Λc self-energy
(see, e.g., Figs. 2 and 3 of Ref. [86] for a detailed discussion
in the case of single-Λ hypernuclei) that translates into a
more negative contribution of the YcN interaction. Note that,
when adding the three contributions they compensate in such
a way that the energy of the 1s1/2 decreases only by about 5
MeV from 5

Λc
Li to 17

Λc
F and then it increases very smoothly

from 41
Λc

Sc to 209
Λc

Bi.
To end this section, we display in Fig. 3 the probabil-

ity density distribution (i.e., the square of the radial wave
function) of the Λc in the 1s1/2 state for the six Λc nuclei
considered, for the YcN -A potential. The variation with the
cutoff is indicated by bands. Results for the ΛcN interac-
tion from Ref. [51] and for YcN -B are not shown since the
differences in the probability density are so small that they
cannot be resolved in the plot. Note that, when moving from
light to heavy Λc nuclei, due to the increase of the size of the
nuclear core, the probability of finding the Λc close to the
center of the nucleus decreases (notice the different scales
of the panels), and it becomes more and more distributed
over the whole nucleus. The probability density distribution
when the Coulomb interaction is artificially switched off is
also shown for comparison. Obviously, and as expected, the
Coulomb repulsion pushes the Λc away from the center of
the nuclei. A similar effect is observed for the probability
densities of the other Λc single-particle bound states.
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4 Summary and conclusions

In the present work, we have investigated the binding ener-
gies of charmed nuclei. As input we used ΛcN and ΣcN
interactions that have been extrapolated from lattice QCD
simulations by the HAL QCD collaboration [49,50] at quark
masses corresponding to mπ = 410–570 MeV to the physical
point. For this extrapolation, we used a framework based on
chiral effective field theory [51–53]. The ΛcN interaction
established in this way is significantly weaker than what has
been employed in most of the studies of charmed nuclei in
the literature so far. The bound state calculations for light
charmed nuclei have been carried out within the Faddeev–
Yakubovsky framework. The results for heavier nuclei are
from calculations of the energies of Λc single-particle bound
states, performed within a perturbative many-body approach,
which allows one to determine the finite nuclei Λc self-
energy from which the energies of the different bound states
can be obtained.

Our results indicate that even for a weak ΛcN interaction
as suggested by the lattice simulations of the HAL QCD
collaboration already A = 4 charmed nuclei are likely to
exist. Only the lightest nucleus considered, a charmed helium
3
Λc

He, turned out to be unbound, in contrast to conjectures
reported in Refs. [15,16].

An additional aspect considered in the present work is
the effect of the ΣcN interaction. Some results from lattice
simulations for this channel have become available recently
[50]. There is admittedly a sizable uncertainty in the extrap-
olation of the HAL QCD results to the physical point, not
least due to missing information on the behavior in the Σ∗

c N
channel, closely connected to the former by heavy quark spin
symmetry. This makes reliable predictions for ΣcN observ-
ables rather difficult at the moment. On the other hand, we
found that the uncertainties due to the present situation in the
ΣcN channel do not affect the conclusions on the proper-
ties of the ΛcN interaction at low energies, relevant for the
quest of charmed nuclei. Specifically, taking into account
the coupling of ΛcN to ΣcN and the direct ΣcN interaction
as suggested by the HAL QCD results has very little influ-
ence on the existence of such bound states. Indeed, for the
ΛcN interaction, the extrapolation of the lattice results to
the physical point seems to be fairly reliable and stable and,
therefore, we believe that robust predictions for the proper-
ties of the Λc in finite and infinite nuclear matter can be given
based on the ΛcN potentials established in Ref. [51] and in
this work.

Prospects for detecting charmed nuclei at J-PARC have
been discussed at various occasions, see, e.g., Ref. [92]. Cor-
responding opportunities by the CBM experiment at FAIR
are considered in Ref. [93]. The option for discovering
charmed nuclei with neutrino beams is addressed in Ref. [94].
An alternative on a different scope is offered by high-energy

experiments such as the pp- and/or heavy-ion collisions [95]
presently pursued by the ALICE collaboration [96,97] at
the LHC/CERN or the STAR collaboration at RHIC/BNL
[98,99]. Here “exotic” nuclei such as the anti-hypertriton or
the 4He were already produced and detected, and the lightest
charmed nuclei might be within reach—now or in the near
future—should they indeed exist. That said, one should be
aware that there are tremendous experimental challenges for
producing and detecting charmed nuclei, as has been sum-
marized in Ref. [17] but also indicated in the introduction to
the present work.
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Appendix: ΣcN scattering

In this appendix, we discuss the results for ΣcN scattering.
However, let us emphasize from the beginning that these
have to be interpreted with caution. For charmed baryons,
heavy quark spin symmetry plays a role [57,100] and, thus,
one should include not only the ΣcN channel but also Σ∗

c N .
Indeed the ΣcN and Σ∗

c N thresholds are just about 65 MeV
apart so that the coupling between those systems should be
important. Unfortunately, there are no results for the Σ∗

c N
interaction from lattice simulations and, therefore, it cannot
be explicitly included in the analysis. For that reason, it was
omitted in our earlier study [51] and it was assumed that any
effect of the Σ∗

c N interaction can be effectively absorbed into
the ΛcN LECs. After all, since MΣ∗

c
− MΛc = 234 MeV,

there should be little influence on the low-energy ΛcN ampli-
tude anyway. In case of the ΣcN channel, such an assumption
is questionable. In Ref. [57] heavy quark spin symmetry was
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taken into account in the derivation of the potential. But also
in that work, the actual coupling of the ΣcN and Σ∗

c N chan-
nels was ignored in the evaluation of the scattering amplitude.

Another complicacy comes from the fact that the mass dif-
ference MΣc–MΛc is larger than the pion mass. Because of
that the use of the static approximation for the pion exchange
[see Eq. (2)] in the ΛcN → ΣcN transition potential is rather
problematic for energies near and/or above the ΣcN thresh-
old where the exchanged pion can go on-shell. In principle,
one should take into account that there is a ΛcNπ three-body
cut, see Refs. [101–103] for a discussion on this issue for the
analogous DD̄∗–DD̄π case in the context of the X (3872).
As a matter of fact, for the unphysical pion masses of the
LQCD calculation, this problem does not arise. However, it
could have a noticeable influence on the extrapolation of the
ΣcN results to the physical point. This aspect is ignored in
our calculation, and it is also not addressed in the ΣcN study
of Meng et al. [57]. We emphasize that, for energies around
the ΛcN threshold, the static approximation is well justified.

LQCD results for the ΣcN 3S1 phase shifts are available
for mπ = 410, 570, 700 MeV [50]. We determine the LECs
of the contact interaction, cf. Eq. (1), by a fit to the lattice
data at the two lower pion masses. It allows us to determine
the LECs C̃i andCi as well as D̃i and Di , i.e., the ones which
encode the pion-mass dependence of the contact interaction.
The fits are done to the central values of the phase shifts as
given in Fig. 2 of Ref. [50], for energies up to 30 MeV, cf.
upper panel of Fig. 4. Alternative fits with particular emphasis
on the near-threshold behavior of the HAL QCD results were
performed, too, cf. the lower panel. Of course, in both cases,
we made sure that we produce larger near-threshold phase
shifts for mπ = 410 MeV than for 570 MeV, as suggested by
the lattice simulation. It should be said that trying to fit to the
HAL QCD results at somewhat higher energies is not very
meaningful in view of the fact that the Σ∗

c N channel is not
explicitly included. Its threshold is around 85 MeV for the
HAL QCD calculations [50] and, as said above, at roughly
65 MeV for physical masses.

A combined fit to the ΛcN and ΣcN 3S1 phase shifts
turned out to be unnecessary because the inclusion of a
direct ΣcN interaction had practically no effect on the ΛcN
results reported in Ref. [51], at least for the energies consid-
ered there. We did not attempt to reproduce the inelasticity
parameter, given in Ref. [50] in terms of the ΛcN S-matrix,
η = |SΛcN ,ΛcN |. In the lattice simulation it is with values
around 0.995 basically compatible with 1, which suggests
that there is practically no channel coupling. However, we
believe that this could be an artifact of the way how the anal-
ysis by the HAL QCD collaboration is done. In the ΛN−ΣN
systems, the strong channel coupling arises primarily from
the tensor force mediated by pion exchange, and that leads
to a strong coupling of the 3S1 to the 3D1 partial wave, see,
e.g., Fig. 7 in Ref. [61]. Indeed, for 3S1 →3 S1 transitions (as
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Fig. 4 ΣcN 3S1 phase shifts as function of the c.m. kinetic energy.
Lattice QCD results [50] for mπ = 570 MeV (blue open circles) and
410 MeV (green filled circles) are shown together with our fits (blue
and green narrow bands). The broader (red) band is the prediction for
mπ = 138 MeV. Two scenarios, YcN -A (top) and YcN -B (bottom) are
considered, see text. The bands represent the cutoff variation Λ = 500–
600 MeV

well as for 1S0 →1 S0), the expectation value of the tensor
operator is zero. However, in the analysis of the HAL QCD
collaboration, D waves are not considered so that this com-
ponent of the YcN force is only effectively included in the
S-wave interactions. In our calculation, we include the full
one-pion exchange and that means that there is a coupling to
the 3D1 partial wave—at the physical point and also for the
pion masses of the lattice simulation. Since the pion mass is
known and the ΛcΣcπ coupling constant is known, too (at
least at the physical point), one can consider our result as
genuine prediction for the strength of the channel coupling
and, thus, we did not impose any further constraints on it.

Results for the 3S1 phase shift are presented in Fig. 4 for
pion masses of 570 MeV and 410 MeV, together with the
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Table 5 ΛcN and ΣcN (I = 1/2) scattering lengths in the 3S1 partial
wave (in fm), for the YcN potentials described in the text. In case of
ΣcN real and imaginary parts are given. ΛcN results for the interaction
from Ref. [51] are listed as well

ΛcN ΣcN

ΛcN (500) [51] − 0.81

YcN -A (500) − 0.79 (− 1.56, − 1.35)

YcN -B (500) − 0.78 (− 2.09, − 1.70)

ΛcN (600) [51] − 0.98

YcN -A (600) − 0.91 (− 0.08, − 1.97)

YcN -B (600) − 0.90 (− 0.21, − 2.50)

extrapolation to 138 MeV. The bands represent the depen-
dence of the results on variations of the cutoff Λ. One can
see that the lattice results at mπ = 410 MeV and 570 MeV
are reproduced quantitatively by our potential (YcN -A) up to
c.m. energies of around 50 MeV, cf. upper panel of Fig. 4.
If we require a very accurate reproduction of the low-energy
behavior (YcN -B; lower panel), then there is agreement with
the lattice results only up to around 25 MeV. The cutoff
dependence of the fits to the HAL QCD results is fairly small
so that the corresponding bands (blue and green with hatched
structure) are narrow and look partly like lines in the figure.
The phase shift obtained from the interaction at the physical
point (red broad bands) do exhibit a noticeable variation with
the cutoff. Thus, there is a clear influence of the regulator on
the extrapolation. However, a much more sizable uncertainty
in the extrapolation becomes manifest by comparing the two
fitting scenarios considered. When emphasis is put on the
very low-energy results by HAL QCD, then the phase shifts
at the physical point are larger and actually close to the lat-
tice results for unphysical pion masses (Fig. 4; lower panel)
whereas the fit over a larger energy region yields perceptibly
smaller results.

For convenience, we compiled the scattering lengths for
YcN -A and B in Table. 5. Obviously, with the ΣcN inter-
action included there is a small reduction in the ΛcN 3S1

scattering length (for A and for B) as compared to the results
from Ref. [51]. However, the variation is rather moderate and
stays within the uncertainty due to the regulator dependence.
Also the variation in the corresponding ΛcN 3S1 phase shift
is very small. Actually, the ΛcN results with inclusion of a
direct ΣcN interaction, cf. Fig. 5 for YcN -A, can be hardly
distinguished from those presented in Fig. 2 in Ref. [51]. For
the ΣcN channel the situation is rather different. First there
is a sizable difference in the scattering length obtained for the
interactions A and B. In addition, and more disturbing, there
is a fairly drastic regulator dependence. One can certainly
say that there is no indication for a near-by ΣcN bound state,
a conclusion already drawn in Ref. [57]. (The existence of
ΣcN bound states or resonances has been suggested in some
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Fig. 5 Results for the ΛcN 3S1 phase shift for the interaction YcN -
A. Same description of curves and symbols as in Fig. 4. Lattice QCD
results are from Ref. [49]

studies in the past [58,59]). On the other hand, more quanti-
tative conclusions are difficult to draw. Definitely, there is a
significant coupling to the ΛcN channel, mediated by one-
pion exchange, which gives rise to an appreciable imaginary
part of the scattering length in our calculation. Moreover,
one should not forget that the static approximation is used by
us for simplicity reasons. In the real world another channel
is open, namely ΛcNπ , which contributes likewise to the
inelasticity. An appropriate treatment is desirable but tech-
nically demanding and, thus, postponed to the future when
hopefully more information from lattice simulations will be
available. Fortunately, these uncertainties have basically no
effect on the predictions for the properties of the ΛcN inter-
action at low energies, cf. Table 5 and Fig. 5, and also not on
the binding energies of Λc nuclei, as discussed in the main
part of this paper.
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