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Abstract We study the prospects for deducing constraints
on the interaction of charmed baryons with nucleons from
measurements of two-particle momentum correlation func-
tions for Λc p. The correlation functions are calculated for
ΛcN and ΣcN interactions that have been extrapolated from
lattice QCD simulations at unphysical masses of mπ =
410 − 570 MeV to the physical point using chiral effec-
tive field theory as guideline. In addition, we consider phe-
nomenological YcN models from the literature to explore the
sensitivity of the results to the properties of the interaction
in detail. We find that a measurement of the Λc p correlation
functions could indeed allow one to discriminate between
strongly attractive ΛcN forces, as predicted by some phe-
nomenological models, and a weakly attractive interaction
as suggested by the presently available lattice simulations.

1 Introduction

Two-hadron momentum correlation functions extracted from
relativistic heavy-ion collisions provide a doorway to infor-
mation on the hadron-hadron interaction at low energies
[1,2], presently inaccessible by other means. This concerns
especially the interaction of charmed hadrons with ordinary
matter, for example the one of the charmed baryons Λc and
Σc (Yc) with nucleons. Insight into the dynamics of such sys-
tems would deepen our notion of the flavor dependence of
the strong interaction, encoded on the fundamental level in
quantum chromodynamics (QCD). Indeed, the understand-
ing of the flavor dependence of hadron-hadron forces is
a key element in the study of charmed dibaryons [3] and
exotic hadronic molecules [4]. The lack of knowledge on the
YcN interaction also hinders progress in the long-standing
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issue regarding the existence of charmed nuclei [5–23]—for
recent reviews see [24–26]. These are nuclei containing a Yc
hyperon, similar to the more familiar hypernuclei which are
formed with a strange baryon, Λ and/or Σ (Y ).

The discovery of Yc hypernuclei would reveal a new form
of strongly-interacting matter and thereby widen our knowl-
edge on the QCD phase diagram. It would also give hope
to learn about medium effects on the phenomenon of chiral
symmetry restauration, a phenomenon associated with the
light quarks and sensitive to environmental effects, which a
Yc would probe when bound to a nucleus [27]. Although, in
principle, dedicated scattering experiments producing low-
energy Yc hyperons might be feasible in the future at sites
such as J-PARC [28] and KEK [29] in Japan and FAIR
[30,31] in Germany, high-energy heavy-ion experiments pro-
duce enough Yc hyperons (and nucleons, of course) to facili-
tate the extraction of a YcN momentum correlation function.
Given the prospects and no impediment of principle, this is
a timely opportunity worth exploring.

Actually, the opportunity offered by heavy-ion collisions
and/or high-energetic pp collisions has been already suc-
cessfully exploited in respective investigations of the Λp,
Σ0 p, and Ξ− p systems [32–37]. Femtoscopic studies of
the Y N interaction certainly profit from the large Λ produc-
tion yields, which are much larger than those of Λc. Yet,
recent pp, pA and AA experiments [38–44] discovered far
greater Λc yields than predicted by traditional hadroniza-
tion models, which is welcome news for extracting a YcN
correlation function from such collisions. From the theo-
retical side, the ΛcN system benefits from the absence of
nearby thresholds, the presence of which would require a
coupled-channels approach and would also introduce fur-
ther uncertainties [45,46]. Indeed, in case of ΛcN the near-
est other threshold (ΣcN ) is separated by an energy of
MΣc−MΛc = 168 MeV, whereas forY N and the ΛN system
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it is separated by just MΣ − MΛ = 78 MeV. These positive
perspectives motivate us to utilize the available theoretical
information on the YcN force to predict ΛcN momentum
correlation functions with the aim to initiate pertinent fem-
toscopic experiments.

Most of the theoretical work on the YcN force has been
done within meson-exchange models. Vida na et al. and Liu
and Oka [22,47] are the most recent examples. There is also
the very recent quark-model based study of Garcilazo et al.
[48], and that of Maeda et al. [49], which combines both mod-
els. Although not constrained by experimental data, some of
the studies do rest on symmetry principles and physical con-
sistency. In meson-exchange models, SU(4) flavor symmetry,
albeit questionable in the charm sector [50,51], constrains the
values of coupling constants. In quark models, fitting the low-
lying hadron spectrum and hadron-hadron scattering observ-
ables constrains parameters such as quark masses and quark-
quark forces. Nonetheless, the overall situation is certainly
unsatisfactory. However, it started to change with the recent
lattice QCD (LQCD) simulations by the HAL QCD Collab-
oration [21,52]. The HAL QCD results are for unphysical
quarks masses, corresponding to mπ = 410 MeV or larger,
and thus, need to be extrapolated to the physical point if one
wants to see the proper physical implications. Haidenbauer
and Krein [53] carried out such an extrapolation with chiral
effective field theory (EFT) techniques [54,55], following
the scheme of [56–58] used for the Y N system. The over-
all theoretical picture revealed by the phenomenological and
lattice studies can be summarized as follows: (1) the ΛcN
and ΣcN forces are attractive, (2) the ΛcN interaction from
LQCD is significantly weaker than the one suggested by most
phenomenological studies, (3) the strength of the ΛcN force
increases noticeably when the lattice results are extrapoled
to the physical point but still remains on a moderate level.
Given this situation, there arises the question whether mea-
surements of the ΛcN correlation functions could allow one
to discriminate between the model results and the predictions
based on/inferred from lattice simulations. In this paper, we
give an affirmative answer to this question.

The paper is organized as follows. In the next section,
we provide a brief overview of the formalism for evaluating
two-hadron momentum correlation functions. In Sect. 3 we
introduce the employed ΛcN interactions and we provide
predictions for the corresponding Λc p correlation functions.
The paper closes with a Summary.

2 Correlation function

We summarize the main steps and compile the basic equa-
tions of femtoscopy to access hadron-hadron scattering infor-
mation [59,60]. The extracted observable is a correlation
function C(p1,p2) of measured hadron momenta p1 and

p2. C(p1,p2) entails a ratio of two yields: C(p1,p2) =
A(p1,p2)/B(p1,p2), with A(p1,p2) formed by hadrons
coming from the same collision (coincidence yield) and
B(p1,p2) formed by hadrons coming from separate events
(uncorrelated yield). A C(p1,p2) not equal to unity implies
correlation between the detected particles; a correlation
occurs due to mutual interaction and also due to quantum
interference. The latter arises only for identical particles and,
accordingly, is not present in the combination Yc and N .

Experimental data onC(p1,p2) and their theoretical inter-
pretation are normally discussed in terms of the center-of-
mass and relative momentum coordinates, P = p1 + p2 and
k = (M2p1 − M1p2)/(M1 + M2), where M1 and M2 are
the hadron masses. In terms of these coordinates, a connec-
tion between the measured correlation function and hadron-
hadron scattering can be made in the rest frame of the pair,
P = 0, through the (approximately valid) Koonin-Pratt for-
mula [1,61]:

C(k) = A(k)

B(k)
≈

∫
dr S12(r) |ψ(r,k)|2 . (1)

Here ψ(r,k) is the relative wave function of the pair and
S12(r) a static source distribution, a relative distance distri-
bution in the pair’s rest frame—[59,60,62,63] discuss the
validity of the assumptions and approximations behind this
formula.

We compute the wave function ψ(r,k) within the for-
malism described in Haidenbauer [46]. To make the paper
self-contained, we describe the main features of that formal-
ism but present only those equations relevant for this study.
As we elaborate in the next section, coupled channels do not
play an important role, basically for the reason discussed in
the Introduction. Therefore, we restrict the formal part to the
single-channel case [46].

Past studies have shown that the correlations are predom-
inantly due to the interaction in the S-waves. Accordingly,
only the pertinent modifications in the S-wave part of the
wave function, ψl=0(r, k) = ψ0(r, k), are taken into account
so that one can write [2,64]:

ψ(r,k) = eik·r + ψ0(r, k) − j0(kr) , (2)

where j0(kr) is the S-wave component of the non-inter-
acting wave function, a spherical Bessel function. Supposing
a spherically symmetric source S12(r), one obtains for the
Koonin-Pratt formula:

C(k) = 1 + 4π

∫
dr r2 S12(r)

[
|ψ0(k, r)|2 − | j0(kr)|2

]
.

(3)

One needs here the wave function ψ0(k, r) away from the
asymptotic region, i.e., for 0 ≤ r ≤ ∞. One can use either
the Schrödinger equation or the Lippmann-Schwinger (LS)
equation to obtain ψ0(k, r). Haidenbauer [46] uses the latter,
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the most convenient choice for nonlocal potentials, like those
[23,53]. Let T0(q, k; E) denote the S-wave component of the
half-off-shell T-matrix and ψ̃0(k, r) = exp(−2iδ0) ψ0(k, r),
where δ0 = δ0(k) is the phase shift; then [68,69]

ψ̃0(k, r) = j0(kr)

+ 1

π

∫
dq q2 j0(qr)

× 1

E − E1(q) − E2(q) + iε
T0(q, k; E) ,

(4)

where E = E1(k) + E2(k), with Ei =
√
k2 + M2

i . The
normalization of ψ0(k, r) is

ψ0(k, r)
r→∞−−−→ e−iδ0

kr
sin(kr + δ0)

= 1

2ikr

[
eikr − e−2iδ0e−ikr

]
, (5)

which differs from the most common form by an overall
phase e−2iδ0 , an immaterial difference as one needs abso-
lute squares only. In the case of ΛcN there are two S-waves,
namely the 1S0 state with total spin S = 0 and the 3S1 with
S = 1. Moreover, the latter partial wave can couple to the
3D1 state via the tensor force. In the present study the cou-
pling 3S1-3D1 is taken into account when solving the LS
equation and evaluating the corresponding T-matrices Tll ′
(l, l ′ = 0, 2), see, e.g., Polinder et al. [56]. However, in the
actual calculation of the wave function according to Eq. (4),
only the S-wave component T00 is needed [46]. Standard
experiments allow one to measure only an average over the
S = 0 and 1 states. It is commonly assumed that the weight is
the same as for free scattering which suggests the substitution
|ψ0|2 → 1/4 |ψ1S0

|2 + 3/4 |ψ3S1
|2.

In the present study we adopt the usual approxima-
tion for the source function S12(r) and represent it by a
Gaussian distribution which depends only on one parame-
ter, namely the source radius R. It is given by S12(r) =
exp(−r2/4R2)/(2

√
πR)3 in the proper normalization. In the

presence of the Coulomb interaction, i.e. for Λc p, Eq. (2)
takes on the form [65]

ψ(r,k) = Ψ C (r,k) + ψ SC
0 (r, k) − F0(kr)/(kr) , (6)

where Fl(kr) is the regular Coulomb wave function for l = 0
and ψ SC

0 (r, k) the strong scattering wave function in the
presence of the Coulomb interaction. Ψ C (r,k) is the full
Coulomb wave function. With these quantities the correla-
tion functionC(k) can be obtained again from Eq. (3) after an
appropriate substitution of the wave functions. Most impor-
tantly, one has to keep in mind that the “1” in Eq. (3) has
to be replaced by

∫
dr r2S12(r)

∫ dΩ
4π

|Ψ C (r,k)|2 [65]. How
calculations with the Coulomb interaction can be performed
in momentum space is described in detail in Appendix D of

Holzenkamp [66]. For that the Vincent-Phatak method [67]
is employed. With it the Coulomb-distorted strong T-matrix
can be obtained, on- and half-off shell, by a matching con-
dition. Then the scattering wave function ψ SC

0 (r, k) can be
again evaluated analogous to Eq. (4).

3 Interactions and results

In this section we present our predictions for ΛcN interac-
tions [23,53] obtained by extrapolating lattice simulations of
the HAL QCD Collaboration to the physical point (LQCD-
e). We begin with summarizing the main ingredients of the
LQCD-e potential. Then, we show results for the Λc p cor-
relation functions obtained from that potential and study
their source size dependence. In addition, we explore the
sensitivity of the correlation functions to the strength of
the ΛcN interaction. For that purpose we resort to results
of phenomenological potentials available in the literature
[22,48,49] for orientation. As already mentioned, in gen-
eral these models suggest a more strongly attractive ΛcN
force than lattice QCD and some [49] even lead to two-body
bound states. It is of interest to examine the impact of such
properties on the correlation function.

3.1 The ΛcN -ΣcN interaction

The ΛcN -ΣcN potential is constructed in close analogy
to the ΛN -ΣN interaction developed by the Jülich-Bonn-
Munich group [56–58] based on chiral EFT and contains
contact terms and contributions from one-pion exchange. For
the 1S0 and 3S1-3D1 partial waves of interest here, one has
[53]:

VΛcN (1S0) = C̃1S0
+ C1S0

(p2 + p′2) , (7)

VΛcN (3S1) = C̃3S1
+ C3S1

(p2 + p′2) , (8)

VΛcN (3D1 − 3S1) = Cε1 p′2 , (9)

VΛcN (3S1 − 3D1) = Cε1 p2 , (10)

V OPE
YcN→YcN = − fYcYcπ fN Nπ

(σ1 · q) (σ2 · q)

q 2 + m2
π

. (11)

where p = |p | and p′ = |p ′| are the initial and final
center-of-mass (c.m.) momenta, and q = p′ − p the trans-
ferred momentum. The strength parameters of the contact
terms, C̃i andCi , the so-called low-energy constants (LECs),
have been determined in Haidenbauer [53] by considering
the HAL QCD results for the 1S0 and 3S1 phase shifts at
unphysical quark masses corresponding to mπ = 410 MeV
and 570 MeV [21] and by a subsequent extrapolation of
the established potential to the physical point, guided by
chiral EFT. The actual values of the LECs can be found
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in Table 1 of that work.1 The coupling constants for pion
exchange are given by the fBB′π = gBB

′
A /2 Fπ , the ratio

of the axial-vector strength gBB
′

A to the pion decay con-
stant Fπ . For the latter and for gNN

A the standard values [70]
(Fπ ≈ 93 MeV, gNN

A = 1.27) are used while the others are
fixed from available lattice QCD results close to the physical
point, amounting to gΣcΣc

A = 0.71 [71] and gΛcΣc
A = 0.74

[72,73]. Note that, under the assumption of isospin conserva-
tion, fΛcΛcπ ≡ 0. Thus, there is no direct contribution from
pion exchange to the ΛcN potential at leading order [56].
However, it contributes to the ΛcN interaction of Haiden-
bauer [53] via the channel coupling ΛcN -ΣcN .

In view of additional lattice results published by the HAL
QCD Collaboration recently, the ΛcN interaction has been
revisited [23]. The new aspect concerns information on the
interaction in the ΣcN channel [52], specifically in the 3S1

partial wave. It turned out that including a direct ΣcN inter-
action into the coupled-channel calculation has only a minor
effect on the predicted ΛcN phase shifts at the energies of
interest here [23]. Nonetheless, for completeness, we study
the effect on the Λc p correlation functions too. In principle,
heavy quark spin symmetry would even require to take into
account the Σ∗

c N channel [49,74,75]. However, as argued
[23] (cf. Appendix), for low-energy ΛcN scattering consid-
ered here we can assume that possible effects of the Σ∗

c N
interaction are already implicitly absorbed into the ΛcN
LECs.

With the interactions defined and the parameters fixed,
the next step is to solve the LS equation for the quantity
T0(q, k; E) [53]. With it one can reconstruct the ΛcN wave
functions, utilizing Eq. (4), and then, in turn, compute the
ΛcN correlation functions. The LS equation requires regular-
ization [76,77] for the potential of Eqs. (7)–(11). In Haiden-
bauer [53] a cutoff scheme with the regularization function
f (p′, p) = exp

[− (
p′4 + p4

)
/Λ4

]
is used [56,57] , with Λ

values 500 MeV and 600 MeV. The choice of the Λ values
is motivated by NLO studies of the ΛN and ΣN systems
[57,58]. The variations of the results with Λ can be assessed
from the bands in the figures below.

As said above, we want explore also in how far differences
in the interaction strength as predicted by other ΛcN poten-
tials are reflected in the pertinent correlation functions. This
goal can be achieved in a simple and efficient way within our
formalism. We employ the same representation for the YcN
force as for LQCD-e interaction, see Eqs. (7)–(11), but now
we adjust the contact terms to the effective range parameters
from the models by Maeda et al. [49], Vidaña et al. [22], and
Garcilazo et al. [48]. This allows us to capture the essential
features and differences such as the overall strength of the

1 Note that the values for C1S0
and C̃3S1

are erroneously interchanged
in Table 1 of Haidenbauer [53]. E.g., C1S0

= 0.2377 ·104 GeV−4 while

C̃3S1
= −0.02077 · 104 GeV−2 for mπ = 138 MeV, etc.

interaction and the relative strength of the singlet and triplet
S-waves, and, thus, enables us to see the impact of these
properties on the correlation functions. We want to empha-
size that we do not need (and we do not aim at) an exact and
quantitative reproduction of the results by those potentials
for that purpose.

A summary of the ΛcN results is given in Table 1 and
in Fig. 1. Table 1 provides an overview of the ΛcN scatter-
ing lengths a and effective range parameters r for the vari-
ous interactions in the spin-singlet (s) and triplet (t) states.
We use the “baryon-baryon” convention with k cot δ0 =
−1/a+r k2/2+ .... The first two entries are for the LQCD-e
interaction from Ref. [53] with cutoffs Λ = 500, 600 MeV.
Then corresponding results for the variant considered [23]
(YcN -A) are listed, which includes a direct ΣcN interaction.
Finally, one can find results for the effective range parameters
for our simulations of a selection of models from [22,48,49],
together with the original results in brackets. Results for the
1S0 and 3S1 phase shifts are presented in Fig. 1. From that
figure one can read off the different properties immediately.
It is obvious that the potential from Maeda et al. [49] (dashed
lines), denoted by CTNN-d, is by far the most attractive one.
It predicts bound states, as mentioned before, with binding
energies of the order of that of the deuteron in both S-waves.
Model A (dash-dotted lines) presented in the paper by Vidaña
et al. [22], deduced from a Y N meson-exchange potential
of the Jülich group [78] via SU(4) symmetry arguments,
suggests a strongly attractive 3S1 interaction and a moder-
ately attractive 1S0 partial wave. TheΛcN interaction derived
within the constituent-quark model (CQM) by Garcilazo et
al. [48] (solid lines) is closest to the interaction inferred from
the lattice simulations. It is slightly less attractive in the 1S0

state but noticeably more attractive in the 3S1 partial wave.
In view of the present uncertainty in the LQCD calculations
[21,52] and in the extrapolation, estimated in Haidenbauer
[53] to be of the order of ±0.3 fm on the level of the ΛcN
scattering lengths, the latter model is not that far apart from
the present lattice predictions.

We note that the results presented above are all obtained
without inclusion of the Coulomb force. Adding the Coulomb
interaction leads to a small modification of the effective range
parameters in case of weakly attractive hadron forces like
the LQCD-e interactions [23,53]. For example, the singlet
(triplet) scattering lengths change from −1.01 fm (−0.98
fm) to −0.97 fm (−0.96 fm) when Coulomb is added to
the LQCD-e (600) potential from Haidenbauer [53]. There
are more sizable effects for strongly attractive potentials like
CTNN-d. Nonetheless, the bound states survive despite of the
Coulomb repulsion, in the original model [49] and likewise
in our simulation.
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Table 1 Effective range parameters in the 1S0 (s) and 3S1 (t) partial
waves. Results are presented for the ΛcN andYcN -A potentials inferred
from LQCD and for the simulations of the potentials from [49] (CTNN-

d), [22] (Model A), and [48] (CQM). For the latter the results of the
original interactions are given in brackets

Potential as (fm) rs (fm) at (fm) rt (fm)

LQCD-e (500) [53] − 0.85 2.88 − 0.81 3.50

LQCD-e (600) [53] − 1.01 2.61 − 0.98 3.15

LQCD-e (500) [23] − 0.85 2.88 − 0.79 3.58

LQCD-e (600) [23] − 1.01 2.61 − 0.91 3.34

CQM [48] − 0.87 (−0.86) 4.55 (5.64) − 2.31 (− 2.31) 2.81 (2.97)

Model A [22] − 2.60 (− 2.60) 2.67 (2.86) − 15.88 (− 15.87) 1.64 (1.64)

CTNN-d [49] 5.31 (5.31) 1.20 (1.20) 5.01 (5.01) 1.20 (1.20)
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Fig. 1 ΛcN phases for the YcN potential inferred from LQCD [53].
The bands represent the cutoff variation Λ = 500−600 MeV, see text. In
addition results for the simulations of the potentials from [49] (CTNN-
d), [22] (Model A), and [48] (CQM) are shown

3.2 Results for the Λc p correlation function

In the discussion of the correlation function we start with
assessing the effects of the Coulomb interaction and of the
source size. Corresponding results can be found in Fig. 2,
based on the LQCD-e potential from Haidenbauer [53],
where we show the Λc p correlation functions for the 1S0 and
3S1 partial waves separately. The choice of considered radii
R of the Gaussian source is motivated by those suggested in
corresponding measurements of Λp correlation functions in
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Fig. 2 Effect of the Coulomb force and the source size R on the Λc p
correlation function. The LQCD-e potential [53] is used for the calcu-
lation

pp collisions at 7 TeV by the ALICE Collaboration (R ≈ 1.2
fm) [35] and of Ωp in central and peripheral Au+Au colli-
sions at 200 GeV by the STAR Collaboration (R ≈ 2.5, 5
fm) [79].

The presence of a repulsive Coulomb force in the Λc p
system leads to a strong depletion of the correlation function
for small momenta. This effect is well-known and also well-
documented, e.g. in calculations and precise measurements
of pp correlations [35]. However, since the Λc p interaction is
much less attractive than pp, the depletion due to Coulomb
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Fig. 3 Difference in the Λc p correlation function for the ΛcN interac-
tions without [53] (filled band) and with a direct ΣcN interaction [23]
(hatched band). Results are shown for the 3S1 (top) and the spin average
(bottom)

is noticeable already at larger momenta and it also shifts
the maximum in the correlation function to somewhat larger
momenta. As a consequence the signal due to the strong inter-
action is significantly reduced. Nonetheless, at least for pp
collisions with source radii around 1.2 fm the effect by the
Λc p interaction should be still detectable in an experiment.
For heavy-ion collisions with a typical source radius around
3–5 fm [32,79] it looks more challenging.

Comparing the results for 1S0 (top) and 3S1 (bottom) one
can see that they are basically identical for the LQCD-e inter-
action (without and with Coulomb force). This is not too sur-
prising given that the corresponding scattering lengths and
phase shifts are also almost identical, see Table 1 and Fig. 1.

Next we compare the results for the ΛcN interactions
without [53] and with a direct ΣcN interaction [23]. This
is done in Fig. 3, selectively for the source radius R = 1.2
fm. One can see that there is not much difference. Practi-
cally speaking, only the overall uncertainy, represented by
the band due to the cutoff variation, is somewhat increased
when additionally the influence of a direct ΣcN interaction
is explicitly taken into account. Therefore, in the following
we will show only the results for the potential from Ref. [53].

Finally, we contrast the correlation functions predicted by
the ΛcN potential [53] inferred from lattice results with those
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Fig. 4 Spin-averaged Λc p correlation functions including the
Coulomb interaction for three different source radii R. Predictions are
shown for the LQCD-e interaction (band) and the simulations of CQM
[48] (solid line), Model A [22] (dash-dotted line), CTNN-d [49] (dashed
line). Also shown is the pure Coulomb interaction (dotted line)

from (simulated) phenomenological potentials. Here we take
the spin average in order to be as close as possible to the
experimental situation. Corresponding results are presented
in Fig. 4, again for different source sizes. Already at first
sight it is clear that the different potentials considered lead
to quite different predictions for the Λc p correlation func-
tions. Specifically, in general, more attractive interactions
yield also larger correlation functions. Even the simulated
CQM interaction which is only moderately more attractive
than the LQCD-e interaction (cf. the ΛcN phase shifts) yields
a noticeably larger maximum of C(k). This is not least due
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to the differences in the 3S1 interaction which enters with a
three-times larger weight than the 1S0. The decisive role of
the 3S1 contribution is most prominently seen by the result
for the simulated model A from Vida na et al. [22], cf. dash-
dotted lines in Fig. 4. The corresponding correlation function
is significantly larger than those of the other considered inter-
actions and it is still sizable for the source size R = 5 fm. It
is safe to say that even an experiment with moderate statis-
tics should be sufficient to discriminate between that model
and the properties exhibited by potentials like CQM or those
inferred from lattice simulations (LQCD-e). Indeed, given
that the spin dependence is not resolved in the standard mea-
surements of correlation functions, it is primarily the strength
of the spin-triplet component which can be tested, of course,
always under the premises that the actual spin distribution of
the produced baryons is close to the purely statistical value.

An interesting behavior is shown by the predictions based
on the simulated CTNN-d interaction that supports bound
states. Here there is a delicate interplay between the repul-
sive Coulomb interaction and the strongly attractive ΛcN
potential, which produces a distinct dependence on the source
radius. We believe that this characteristic behavior constitutes
a rather useful signature that could help for either confirming
or ruling out such bound states in experiments.

4 Summary

We studied the prospects for deducing constraints on the
interaction of charmed baryons with nucleons from mea-
surements of two-particle momentum correlation functions
for Λc p. As a benchmark, the correlation functions have
been evaluated for ΛcN and ΣcN interactions extrapolated
from lattice QCD simulations by the HAL QCD collaboration
[21,52] at unphysical masses ofmπ = 410−570 MeV to the
physical point using chiral effective field theory as guideline
[23,53]. In addition, phenomenological YcN models from
the literature [22,48,49] have been considered in order to
explore the sensitivity to the properties of the interaction in
detail. The repulsive Coulomb interaction between the posi-
tively charged Λc and the proton has been taken into account
in the actual calculation. Only with its effect included a mean-
ingful and realistic estimate of the signal size that could be
expected in experiments can be given.

Our studies suggest that the Λc p correlation function is
definitely a useful tool for acquiring information on the YcN
interaction. Even weakly attractive forces such as those sug-
gested by present-day lattice simulations lead to effects that
should be detectable in pertinent experiments. In case the
ΛcN interaction turns out to be more strongly attractive, as
predicted by some phenomenological models in the litera-
ture, then measurements of the correlation function would

certainly allow one to discriminate between the different sce-
narios.

An open question at the moment is which yields for Λc p
one can expect in dedicated experiments. Predictions by dif-
ferent models for production rates at different accelerators
and/or energies have been summarized in the review by the
ExHIC Collaboration [80], see also Steinheimer et al. [81].
According to the review, the expected yields for ΛcN could
be as large as those for ΩN . The latter channel has been
already measured by the STAR [79] and ALICE [82] Collab-
orations. Thus, looking at the corresponding data and uncer-
tainties might provide us a rough clue on what to expect for
Λc p.
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