001     877822
005     20240610121212.0
024 7 _ |a 10.1021/acsnano.8b09645
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a 2128/25726
|2 Handle
024 7 _ |a altmetric:57867324
|2 altmetric
024 7 _ |a pmid:30916538
|2 pmid
024 7 _ |a WOS:000466052900065
|2 WOS
037 _ _ |a FZJ-2020-02461
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Hsu, Hung-Chang
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Photodriven Dipole Reordering: Key to Carrier Separation in Metalorganic Halide Perovskites
260 _ _ |a Washington, DC
|c 2019
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600883725_17520
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Photodriven dipole reordering of the intercalated organic molecules in halide perovskites has been suggested to be a critical degree of freedom, potentially affecting physical properties, device performance, and stability of hybrid perovskite-based optoelectronic devices. However, thus far a direct atomically resolved dipole mapping under device operation condition, that is, illumination, is lacking. Here, we map simultaneously the molecule dipole orientation pattern and the electrostatic potential with atomic resolution using photoexcited cross-sectional scanning tunneling microscopy and spectroscopy. Our experimental observations demonstrate that a photodriven molecule dipole reordering, initiated by a photoexcited separation of electron–hole pairs in spatially displaced orbitals, leads to a fundamental reshaping of the potential landscape in halide perovskites, creating separate one-dimensional transport channels for holes and electrons. We anticipate that analogous light-induced polarization order transitions occur in bulk and are at the origin of the extraordinary efficiencies of organometal halide perovskite-based solar cells as well as could reconcile apparently contradictory materials’ properties.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Huang, Bo-Chao
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Chin, Shu-Cheng
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hsing, Cheng-Rong
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Nguyen, Duc-Long
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schnedler, Michael
|0 P:(DE-Juel1)143949
|b 5
700 1 _ |a Sankar, Raman
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 7
700 1 _ |a Wei, Ching-Ming
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Chen, Chunguang
|0 P:(DE-Juel1)172735
|b 9
700 1 _ |a Ebert, Philipp
|0 P:(DE-Juel1)130627
|b 10
700 1 _ |a Chiu, Ya-Ping
|0 0000-0001-7065-4411
|b 11
|e Corresponding author
773 _ _ |a 10.1021/acsnano.8b09645
|g Vol. 13, no. 4, p. 4402 - 4409
|0 PERI:(DE-600)2383064-5
|n 4
|p 4402 - 4409
|t ACS nano
|v 13
|y 2019
|x 1936-086X
856 4 _ |u https://juser.fz-juelich.de/record/877822/files/acsnano.8b09645.pdf
|y Restricted
856 4 _ |y Published on 2019-03-27. Available in OpenAccess from 2020-03-27.
|u https://juser.fz-juelich.de/record/877822/files/ACS_Nano_13_4402_2019-1.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/877822/files/acsnano.8b09645.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2019-03-27. Available in OpenAccess from 2020-03-27.
|x pdfa
|u https://juser.fz-juelich.de/record/877822/files/ACS_Nano_13_4402_2019-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877822
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)143949
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)144121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)172735
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130627
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 0000-0001-7065-4411
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2018
|d 2020-02-27
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS NANO : 2018
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21