000877841 001__ 877841
000877841 005__ 20240708133514.0
000877841 0247_ $$2doi$$a10.1088/1402-4896/ab4923
000877841 0247_ $$2ISSN$$a0031-8949
000877841 0247_ $$2ISSN$$a1402-4896
000877841 0247_ $$2Handle$$a2128/25221
000877841 0247_ $$2altmetric$$aaltmetric:77043689
000877841 0247_ $$2WOS$$aWOS:000520000600031
000877841 037__ $$aFZJ-2020-02465
000877841 082__ $$a530
000877841 1001_ $$0P:(DE-Juel1)169120$$aErtmer, S.$$b0$$eCorresponding author
000877841 245__ $$aLight-reflection-induced changes in the line shape of sputtered atoms
000877841 260__ $$aStockholm$$bThe Royal Swedish Academy of Sciences$$c2020
000877841 3367_ $$2DRIVER$$aarticle
000877841 3367_ $$2DataCite$$aOutput Types/Journal article
000877841 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594025578_25319
000877841 3367_ $$2BibTeX$$aARTICLE
000877841 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877841 3367_ $$00$$2EndNote$$aJournal Article
000877841 520__ $$aThe erosion from plasma-facing components has to be monitored in many kind of laboratory and fusion plasmas. For this purpose, spectroscopy is an essential tool. Under certain conditions the particle flux can be calculated from the absolute line intensities of the sputtered material using so-called S/XB values. The impact of light reflection on the emission induced by sputtered particles at the mirror-grade polished surface of tungsten (W) and aluminum (Al) was investigated in a low-density (n e ≈ 2 × 1012 cm−3) and low-temperature (T e ≈ $3\,\mathrm{eV}$) argon (Ar) plasma in the linear plasma device PSI-2 using high-resolution spectroscopy. Using the line shape affected by Doppler shift we show that the light reflection has a considerable impact on the number of measured photons and has to be taken into account for calculating particle fluxes. The Al target was sputtered by Ar ions at the incident ion energy of $120\,\mathrm{eV}$. The measured profile of the Al I line ($3961.52\,\mathring{\rm A} $) was compared with a Doppler-shifted emission model based on the Thompson energy distribution function. In this new model, the instrumental broadening and the impact of the Zeeman effect were also taken into account. The parameter for the high-energy fall-off n of the energy distribution function ($\propto 1/{E}^{n+1}$), the surface binding energy E b and the surface reflectance were derived by comparing the experimental and the synthetic spectrum. The W target was sputtered by Ar ions at incident ion energies in the range of $30$–$160\,\mathrm{eV}$. The influence of the ion impact energy on the energy distribution of the sputtered particles was demonstrated
000877841 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000877841 588__ $$aDataset connected to CrossRef
000877841 7001_ $$0P:(DE-Juel1)5739$$aMarchuk, O.$$b1
000877841 7001_ $$0P:(DE-Juel1)165722$$aDickheuer, S.$$b2
000877841 7001_ $$0P:(DE-Juel1)162160$$aRasiński, M.$$b3
000877841 7001_ $$0P:(DE-Juel1)130070$$aKreter, A.$$b4
000877841 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b5
000877841 773__ $$0PERI:(DE-600)1477351-x$$a10.1088/1402-4896/ab4923$$gVol. T171, p. 014031 -$$p014031 -$$tPhysica scripta$$vT171$$x1402-4896$$y2020
000877841 8564_ $$uhttps://juser.fz-juelich.de/record/877841/files/Postprint%20Ertmer.pdf$$yPublished on 2020-03-04. Available in OpenAccess from 2021-03-04.
000877841 8564_ $$uhttps://juser.fz-juelich.de/record/877841/files/Postprint%20Ertmer.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-03-04. Available in OpenAccess from 2021-03-04.
000877841 909CO $$ooai:juser.fz-juelich.de:877841$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169120$$aForschungszentrum Jülich$$b0$$kFZJ
000877841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5739$$aForschungszentrum Jülich$$b1$$kFZJ
000877841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165722$$aForschungszentrum Jülich$$b2$$kFZJ
000877841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b3$$kFZJ
000877841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich$$b4$$kFZJ
000877841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b5$$kFZJ
000877841 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000877841 9141_ $$y2020
000877841 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-24
000877841 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-24
000877841 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877841 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-24
000877841 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-24
000877841 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-24
000877841 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-24
000877841 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-24$$wger
000877841 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-24
000877841 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-24$$wger
000877841 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-24
000877841 920__ $$lyes
000877841 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000877841 9801_ $$aFullTexts
000877841 980__ $$ajournal
000877841 980__ $$aVDB
000877841 980__ $$aUNRESTRICTED
000877841 980__ $$aI:(DE-Juel1)IEK-4-20101013
000877841 981__ $$aI:(DE-Juel1)IFN-1-20101013