001     877841
005     20240708133514.0
024 7 _ |a 10.1088/1402-4896/ab4923
|2 doi
024 7 _ |a 0031-8949
|2 ISSN
024 7 _ |a 1402-4896
|2 ISSN
024 7 _ |a 2128/25221
|2 Handle
024 7 _ |a altmetric:77043689
|2 altmetric
024 7 _ |a WOS:000520000600031
|2 WOS
037 _ _ |a FZJ-2020-02465
082 _ _ |a 530
100 1 _ |a Ertmer, S.
|0 P:(DE-Juel1)169120
|b 0
|e Corresponding author
245 _ _ |a Light-reflection-induced changes in the line shape of sputtered atoms
260 _ _ |a Stockholm
|c 2020
|b The Royal Swedish Academy of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1594025578_25319
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The erosion from plasma-facing components has to be monitored in many kind of laboratory and fusion plasmas. For this purpose, spectroscopy is an essential tool. Under certain conditions the particle flux can be calculated from the absolute line intensities of the sputtered material using so-called S/XB values. The impact of light reflection on the emission induced by sputtered particles at the mirror-grade polished surface of tungsten (W) and aluminum (Al) was investigated in a low-density (n e ≈ 2 × 1012 cm−3) and low-temperature (T e ≈ $3\,\mathrm{eV}$) argon (Ar) plasma in the linear plasma device PSI-2 using high-resolution spectroscopy. Using the line shape affected by Doppler shift we show that the light reflection has a considerable impact on the number of measured photons and has to be taken into account for calculating particle fluxes. The Al target was sputtered by Ar ions at the incident ion energy of $120\,\mathrm{eV}$. The measured profile of the Al I line ($3961.52\,\mathring{\rm A} $) was compared with a Doppler-shifted emission model based on the Thompson energy distribution function. In this new model, the instrumental broadening and the impact of the Zeeman effect were also taken into account. The parameter for the high-energy fall-off n of the energy distribution function ($\propto 1/{E}^{n+1}$), the surface binding energy E b and the surface reflectance were derived by comparing the experimental and the synthetic spectrum. The W target was sputtered by Ar ions at incident ion energies in the range of $30$–$160\,\mathrm{eV}$. The influence of the ion impact energy on the energy distribution of the sputtered particles was demonstrated
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Marchuk, O.
|0 P:(DE-Juel1)5739
|b 1
700 1 _ |a Dickheuer, S.
|0 P:(DE-Juel1)165722
|b 2
700 1 _ |a Rasiński, M.
|0 P:(DE-Juel1)162160
|b 3
700 1 _ |a Kreter, A.
|0 P:(DE-Juel1)130070
|b 4
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 5
773 _ _ |a 10.1088/1402-4896/ab4923
|g Vol. T171, p. 014031 -
|0 PERI:(DE-600)1477351-x
|p 014031 -
|t Physica scripta
|v T171
|y 2020
|x 1402-4896
856 4 _ |y Published on 2020-03-04. Available in OpenAccess from 2021-03-04.
|u https://juser.fz-juelich.de/record/877841/files/Postprint%20Ertmer.pdf
856 4 _ |y Published on 2020-03-04. Available in OpenAccess from 2021-03-04.
|x pdfa
|u https://juser.fz-juelich.de/record/877841/files/Postprint%20Ertmer.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877841
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169120
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)5739
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165722
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130070
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129976
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-24
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-24
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-01-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-24
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-24
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21