
Schlüsseltechnologien / Key Technologies

Band / Volume 222

ISBN 978-3-95806-478-2

Tools and Workflows for Data & Metadata Management

of Complex Experiments
Building a Foundation for Reproducible & Collaborative Analysis

in the Neurosciences

Julia Sprenger

222

K
e

y
 T

e
c

h
n

o
lo

g
ie

s
M

a
n

a
g

e
m

e
n

t
o

f
C

o
m

p
le

x
E

xp
e

ri
m

e
n

ts

Schriften des Forschungszentrums Jülich

Reihe Schlüsseltechnologien / Key Technologies Band / Volume 222

Forschungszentrum Jülich GmbH
Institute of Neuroscience and Medicine
Computational and Systems Neuroscience (INM-6 / IAS-6)

Institut für Neurowissenschaften und Medizin
Decoding the human brain at systemic levels (INM-10)

Tools and Workflows for Data & Metadata

Management of Complex Experiments

Building a Foundation for Reproducible & Collaborative
Analysis in the Neurosciences

Julia Sprenger

Schriften des Forschungszentrums Jülich
Reihe Schlüsseltechnologien / Key Technologies Band / Volume 222

ISSN 1866-1807 ISBN 978-3-95806-478-2

Bibliografische Information der Deutschen Nationalbibliothek.
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte Bibliografische Daten
sind im Internet über http://dnb.d-nb.de abrufbar.

Herausgeber Forschungszentrum Jülich GmbH
und Vertrieb: Zentralbibliothek, Verlag
 52425 Jülich
 Tel.: +49 2461 61-5368
 Fax: +49 2461 61-6103
 zb-publikation@fz-juelich.de
 www.fz-juelich.de/zb

Umschlaggestaltung: Grafische Medien, Forschungszentrum Jülich GmbH

Druck: Grafische Medien, Forschungszentrum Jülich GmbH

Copyright: Forschungszentrum Jülich 2020

Schriften des Forschungszentrums Jülich
Reihe Schlüsseltechnologien / Key Technologies, Band / Volume 222

D 82 (Diss. RWTH Aachen University, 2020)

ISSN 1866-1807
ISBN 978-3-95806-478-2

Vollständig frei verfügbar über das Publikationsportal des Forschungszentrums Jülich (JuSER)
unter www.fz-juelich.de/zb/openaccess.

 This is an Open Access publication distributed under the terms of the Creative Commons Attribution License 4.0,
 which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

List of contributing papers and software projects

The presented thesis is based on the publications and software projects listed below.

Massively parallel multi-electrode recordings of macaque motor cortex

during an instructed delayed reach-to-grasp task

by Thomas Brochier*, Lyuba Zehl*, Yaoyao Hao, Margaux Duret, Julia Sprenger, Michael

Denker, Sonja Grün, and Alexa Riehle

Published in Scientific Data on April, 10th, 2018 (Brochier et al., 2018).

This publication forms the basis of Chapter 2 and Appendix A and contributed to

Zehl (2018). The individual authors contributed to the following aspects of the publica-

tion as described by Zehl (2018): “Thomas Brochier designed, set up and performed the

experiment and wrote the manuscript. Lyuba Zehl designed and performed the data

and metadata management of the experiment, developed and implemented the data and

metadata loading and pre-processing routines, wrote the manuscript and designed the

corresponding figures. Yaoyao Hao performed the experiment, helped with technical

issues of the experimental setup and provided valuable feedback for the manuscript.

Margaux Duret was involved in setting up and performing the experiment and cor-

responding pre-processing steps, and provided valuable feedback for the manuscript.

Julia Sprenger was involved in implementing experimental pre-processing steps, sup-

ported the implementation of the data and metadata loading routines, and provided

valuable feedback for the manuscript. Michael Denker provided valuable feedback for

the data and metadata management, was involved in implementing the data and meta-

data loading routines, and provided valuable feedback for the manuscript. Sonja Grün

was involved in writing the manuscript and provided valuable feedback. Alexa Riehle

was involved in setting up performing the experiment, performed the spike sorting and

provided valuable feedback for the manuscript.” In the following, Julia Sprenger took

over the further development of the data and metadata pipeline that lead to this data

publication and extended it to enable the potential release of additional datasets.

odMLtables: A user-friendly approach for managing metadata of neu-

rophysiological experiments

by Julia Sprenger, Lyuba Zehl, Jana Pick, Michael Sonntag, Jan Grewe, Thomas Wachtler,

Sonja Grün and Michael Denker

Published in Frontiers in Neuroinformatics on September, 27th, 2019 (Sprenger et

al., 2019).

This publication forms the basis of Chapter 3 and contributed to Chapter 1. The

individual authors contributed to the following aspects of the publication:

Julia Sprenger designed and developed the publicly available software including the

graphical user interface, testing framework and documentation and contributed to the

manuscript. Lyuba Zehl initialized the software project, supervised the software design

and gave valuable feedback for the manuscript. Jana Pick designed and implemented an

early version of the software. Michael Sonntag and Jan Grewe developed the underlying

odML package, contributed to the manuscript and provided feedback to the manuscript.

Thomas Wachtler and Sonja Grün gave valuable feedback on the manuscript. Michael

Denker was involved in the software design and contributed to the manuscript.

The Neo Python Package1

The open-source software package Neo (Garcia, Guarino, et al., 2014) is the main focus

of Chapter 4 with version 0.7.1 being considered here. Among other active Neo devel-

opers, Julia Sprenger contributed to the release versions 0.5.1, 0.5.2, 0.6.0, 0.7.0 in form

of extending the software package to new formats (NeuralynxIO, NestIO), performance

improvement and bug fixes for already supported formats (BlackrockIO), testing and

feedback of writable formats (NixIO), conceptual contribution and feedback on the struc-

tural development of the data representation (RawIO mechanism, lazy loading, future

versions of ChannelIndex mechanism), the design and supervision of the development

of an extended annotation mechanism (array_annotations), development and support

of utility functionality and community support. She also contributed to closely related

projects like the nix-odML-converter2.

1Neo, http://neuralensemble.org/neo, RRID:SCR_000634
2nix-odML-converter, https://pypi.org/project/nixodmlconverter

Using Elephant to construct reproducible analysis workflows of elec-

trophysiological activity data from experiment and simulation

by Michael Denker, Alper Yegenoglu, Andrew P. Davison, Julia Sprenger, Danylo Ulianych,

Sonja Grün, Elephant contributors.

Expected submission is end of 2019.

Julia Sprenger contributed tutorial material demonstrating the interaction between

Elephant, Neo, odML and odMLtables. She developed a pilot structure for the inte-

gration of external spike sorting software into Elephant, implemented the spike field

coherence and spike triggered average functionality and contributed to the maintenance

of the software project. Parts of Chapters 4 and 6 will contribute to the this anticipated

publication.

Additional related publications not discussed in this thesis:

1024-channel electrophysiological recordings during resting state in

macaque visual cortex

by Xing Chen, Aitor Morales-Gregorio, Julia Sprenger, Sacha van Albada, Sonja Grün,

Pieter Roelfsema

Expected submission is 2020.

Julia Sprenger supported the data release by supervising the development of the

preprocessing and preparation of the datasets.

Summary

The scientific knowledge of mankind is based on the verification of hypotheses by car-

rying out experiments. As the construction and conduct of an experiment becomes

increasingly complex more and more scientists are involved in a single project. In order

to make the generated data easily accessible to all scientists and, at best, to the en-

tire scientific community, it is essential to comprehensively document the circumstances

of the data generation, as these contain essential information for later analysis and

interpretation.

In this thesis, I present two complex neuroscience projects and the strategies, tools,

and concepts that were used to comprehensively track, process, organize, and prepare

the collected data for joint analysis. First, I describe the older of the two experiments

and explain in detail the generation of data and metadata and the pipeline used for

aggregating metadata. A hierarchical approach based on the open source software odML

for metadata organization was implemented to capture the complex meta information of

this project. I evaluate the design concepts and tools used and derive a general catalogue

of requirements for scientific collaboration in complex projects. Also, I identify issues

and requirements that were not yet addressed by this pipeline. There were, in particular,

the difficulties in i) entering manual metadata and structuring the metadata collection,

ii) combining metadata with the actual data, and iii) setting up the pipeline in a modular

generic and transparent manner.

Guided by this analysis, I describe concept and tool implementations to address these

identified issues. I developed a complementary tool (odMLtables) to i) facilitate the

capture of metadata in a structured way and to ii) convert these easily into the hierar-

chical, standardized metadata format odML. odMLtables provides an interface between

the easy-to-read tabular metadata representation in the formats commonly used in lab-

oratory environments (csv/xls) and the hierarchically organized odML format based

on xml, which is designed for a comprehensive collection of complex metadata records

in an easily machine-readable manner.

Supplementing the coordinated capture of metadata, I contributed to and shaped the

Neo toolbox for the standardized representation of electrophysiological data. This tool-

box is a key component for electrophysiological data analysis as it integrates different

proprietary and non-proprietary file formats and serves as a bridge between different

file formats. I emphasize new features that simplify the process of data and metadata

handling in the data acquisition workflow.

I introduce the concept of workflow management into the field of scientific data pro-

cessing, based on the common Python-based snakemake package. For the second, more

recent electrophysiological experiment, I designed and implemented the workflow for

capturing and packaging metadata and data in a comprehensive form. Here I used the

generic neuroscience information exchange format (Nix) for the user-friendly packaging

of data sets including data and metadata in combined form.

Finally, I evaluate the improved workflow against the requirements of collaborative

scientific work in complex projects. I establish general guidelines for conducting such

experiments and workflows in a scientific environment. In conclusion, I present the next

development steps for the presented workflow and potential avenues for deploying this

prototype as a production prototype to a wider scientific community.

Zusammenfassung

Das wissenschaftliche Wissen der Menschheit basiert auf der Überprüfung von Hypothe-

sen durch Experimente. Da der Aufbau und die Durchführung eines Experiments im-

mer komplexer werden, werden immer mehr Wissenschaftler an einem einzigen Pro-

jekt beteiligt. Um die erzeugten Daten für alle Wissenschaftler und bestenfalls für die

gesamte wissenschaftliche Gemeinschaft leicht zugänglich zu machen, ist es unerlässlich,

die Umstände der Datengenerierung umfassend zu dokumentieren, da diese wesentliche

Informationen für die spätere Analyse und Interpretation enthalten.

In dieser Arbeit stelle ich zwei komplexe neurowissenschaftliche Projekte und die

Strategien, Werkzeuge und Konzepte vor, mit denen die gesammelten Daten umfassend

verfolgt, verarbeitet, organisiert und für die gemeinsame Analyse vorbereitet wurden.

Zunächst beschreibe ich das ältere der beiden Experimente und erkläre detailliert die

Erzeugung von Daten und Metadaten sowie die Pipeline zur Aggregation von Meta-

daten. Um die komplexe Metainformation dieses Projekts zu erfassen, wurde ein hier-

archischer Ansatz auf Basis der Open-Source-Software odML für die Metadatenorganisa-

tion implementiert. Ich evaluiere die verwendeten Designkonzepte und Werkzeuge und

leite daraus einen allgemeinen Anforderungskatalog für die wissenschaftliche Zusam-

menarbeit in komplexen Projekten ab. Außerdem identifiziere ich Probleme und An-

forderungen, die durch diese Pipeline noch nicht gelöst wurden. Insbesondere bestand

die Schwierigkeit darin, i) manuelle Metadaten einzugeben und die Metadatenerfassung

zu strukturieren, ii) Metadaten mit den eigentlichen Daten zu kombinieren und iii) die

Pipeline modular generisch und transparent aufzubauen.

Anhand dieser Analyse beschreibe ich Konzept- und Tool-Implementierungen, um

diese identifizierten Probleme anzugehen. Ich habe ein ergänzendes Werkzeug (odMLtables)

entwickelt, um i) die strukturierte Erfassung von Metadaten zu erleichtern und ii) diese

einfach in das hierarchische, standardisierte Metadatenformat odML zu konvertieren.

odMLtables bietet eine Schnittstelle zwischen den leicht lesbaren tabellarischen Meta-

datenrepräsentation in den in Laborumgebungen gebräuchlichen Formaten (csv/xls)

und dem hierarchisch organisierten odML-Format auf Basis von xml, das für eine um-

fassende Sammlung komplexer Metadatensätze in leicht maschinenlesbarer Form konzip-

iert ist.

Ergänzend zur koordinierten Erfassung von Metadaten habe ich die Neo Toolbox für

die standardisierte Darstellung elektrophysiologischer Daten mitgestaltet. Diese Tool-

box ist eine Schlüsselkomponente für die elektrophysiologische Datenanalyse, da sie ver-

schiedene proprietäre und nicht-proprietäre Dateiformate integriert und als Brücke zwis-

chen verschiedenen Dateiformaten dient. Ich betone neue Funktionen, die den Prozess

des Daten- und Metadatenhandlings im Workflow der Datenerfassung vereinfachen.

Ich führe das Konzept des Workflow-Managements in den Bereich der wissenschaftlichen

Datenverarbeitung ein, basierend auf dem gängigen Python-basierten snakemake Paket.

Für das zweite, neuere elektrophysiologische Experiment habe ich den Workflow zur Er-

fassung und Verpackung von Metadaten und Daten in einer umfassenden Form konzip-

iert und implementiert. Hier habe ich das generische neurowissenschaftliche Informa-

tionsaustauschformat (Nix) für die benutzerfreundliche Verpackung von Datensätzen

mit Daten und Metadaten in kombinierter Form verwendet.

Schließlich evaluiere ich den verbesserten Workflow anhand der Anforderungen an

die wissenschaftliche Zusammenarbeit in komplexen Projekten. Ich erstelle allgemeine

Richtlinien für die Durchführung solcher Experimente und Workflows in einem wis-

senschaftlichen Umfeld. Abschließend stelle ich die nächsten Entwicklungsschritte für

den vorgestellten Workflow und mögliche Wege vor, diesen Prototyp als Serienprototyp

einer breiteren wissenschaftlichen Gemeinschaft zur Verfügung zu stellen.

Contents

1 Introduction 1

1.1 Data and metadata models . 3

1.1.1 Hierarchical metadata in the odML model 4

1.1.2 Generic data organization via the Nix model 8

1.2 Thesis overview . 11

2 Sharing data 13

2.1 Relevance to the field . 16

2.2 The experiment . 18

2.3 The metadata structure . 24

2.4 Data and metadata processing pipeline 24

2.5 Data loading and enrichment with metadata 28

2.6 Shortcomings of the odML generation pipeline 32

2.7 Requirements for maintainable and reproducible metadata management 37

2.7.1 Evaluation of presented metadata pipeline 39

3 Metadata management 43

3.1 Introduction to odMLtables . 43

3.2 Software description . 47

3.2.1 Tabular representation of the odML format 49

3.2.2 Software functionalities . 49

3.2.3 Software architecture . 52

3.3 Embedding odMLtables in data acquisition and analysis 53

3.4 Discussion . 57

3.4.1 Performance estimation . 59

3.4.2 odMLtables as conversion tool . 60

3.4.3 Relation to electronic laboratory notebooks 61

3.4.4 Outlook . 62

4 Data representation 67

4.1 The Neo Python package . 69

4.1.1 Feature updates and current development 70

4.1.2 Neo object structure . 76

4.2 Neo usage examples . 78

I

4.2.1 Loading & visualization . 79

4.2.2 Annotation of data with metadata from odML 79

4.2.3 Saving data & format conversion 82

4.3 Comparison of Neo and NWB:N . 85

4.4 Summary . 87

5 Workflow management 89

5.1 Workflow management tools - Snakemake 92

5.2 Practical application . 97

5.2.1 The Vision-for-Action project . 97

5.3 Metadata workflow in the Vision-for-Action project 103

5.3.1 Discussion . 110

5.3.2 Workflow evaluation . 113

5.4 Summary & guidelines . 115

6 Discussion 117

6.1 Comparison of Reach-to-Grasp and Vision-for-Action workflows for data

and metadata handling . 121

6.1.1 Experimental design . 121

6.1.2 Concept for metadata aggregation 122

6.1.3 Changes due to software updates 122

6.1.4 Usability . 123

6.1.5 Pipeline and workflow approach 124

6.2 Outlook . 124

6.2.1 The future of odMLtables . 124

6.2.2 The future of Neo . 125

6.2.3 Automated workflow management 125

6.2.4 Data analysis . 126

6.2.5 Published datasets . 126

6.2.6 Lessons to learn . 128

6.2.7 Concept extension . 128

6.2.8 Dissemination of a data and metadata workflow system 129

6.2.9 Looking further ahead . 131

A Supplementary description of the Reach-to-Grasp experiment 133

A Experimental apparatus . 133

A.1 Behavioral control system . 135

A.2 Neural recording platform . 138

A.3 Origin of the channel IDs . 140

B Data preprocessing . 140

B.1 Translation of digital events to trial events 142

B.2 Preprocessing of behavioral analog signals 142

B.3 Offline spike sorting . 143

II

B.4 Code availability . 144

C Data records . 145

D Technical validation . 150

D.1 Correction of data alignment . 150

D.2 Quality assessment . 150

D.3 LFP data quality . 151

D.4 Spike data quality . 152

E Usage notes . 153

III

IV

List of Figures

1.1 Reproducibility related publications . 3

1.2 odML structure and objects . 4

1.3 odML model versions . 5

1.4 Example odML structure . 7

1.5 Nix model objects . 9

1.6 Nix model application examples . 10

2.1 Components of the Reach-to-Grasp experiment 19

2.2 Implant locations of the Utah arrays . 21

2.3 Schematic metadata collection of session l101210-001 25

2.4 Schematic metadata aggregation pipeline used in Brochier et al. (2018) . 27

2.5 Example visualization of the published data 31

2.6 Schematic data loading pipeline used in Brochier et al. (2018) 33

2.7 Origin of gaps in continuous recording data 34

3.1 Generic workflow of generating metadata collections from source files

using the odML framework . 45

3.2 Minimal workflow for manually editing odML files via odMLtables 48

3.3 Mapping between hierarchical and tabular metadata format 50

3.4 Main window of the odMLtables GUI . 51

3.5 Template score sheet . 54

3.6 Metadata collection filtered to show only Properties with an empty value 56

3.7 Integrating odMLtables and other software tools in the different stages of

an experiment from preparation to publication 65

4.1 Neo 0.7 object structure . 70

4.2 Neo embedding . 71

4.3 Neo 0.3 architecture . 72

4.4 Neo 0.7 architecture . 73

4.5 Proposed Neo architecture . 74

4.6 Data visualization example . 81

5.1 Snakemake example workflow for data generation and plotting 95

5.2 The RIVER setup . 101

5.3 Metadata workflow rules for Vision-for-Action experiment 104

V

5.4 Metadata workflow examples from Vision-for-Action experiment 105

6.1 General schema of scientific data and metadata handling 120

6.2 Comparison of the metadata aggregation for Reach-to-Grasp and Vision-

for-Action experiments . 123

6.3 Neo IOs and future plans . 127

A.1 Overview of the experimental apparatus and behavioral control system. 134

A.2 Overview of the setup . 136

A.3 Sketch of the components related to the recording of the neuronal signals 141

A.4 Overview of data types contained in l101210-001 146

A.5 Overview of raw signal and spike data of monkey L (l101210-001) 147

A.6 Overview of data types contained in i140703-001 148

A.7 Overview of LFP and spike data of monkey N (i140703-001) 149

VI

List of Tables

2.1 Overview of subjects and recording sessions 20

2.2 Translation table of 8-bit binary to decimal event codes and their inter-

pretation in a trial context . 23

2.3 Overview of workflow features for Brochier et al. (2018) 40

3.1 Overview of odMLtables characteristics 48

5.1 Recording file formats and content in the Vision-for-Action project . . . 100

5.2 Metadata files in the Vision-for-Action project 102

5.3 Overview of workflow features for Vision-for-Action project 115

A.1 Overview of six objects sensors to monitor and control the monkey’s

behavior . 135

A.2 Overview of offline sorted single and multi unit activity (SUA and MUA) 144

VII

VIII

List of Code Listings

2.1 Example code for loading and processing of published data 29

2.2 Continuation of Code Listing 2.1: Plotting published data 30

3.1 Assemble metadata using odMLtables . 58

4.1 Data loading and visualization with Neo 80

4.2 Annotation access and editing with odML and Neo 83

4.3 Output of Code Listing 4.2 . 84

4.4 Saving data and metadata to NIX . 86

5.1 Minimal snakemake example workflow 93

5.2 Snakemake example workflow for data generation and plotting 94

5.3 Standalone Python scripts used in Code Listing 5.2 96

5.4 Excerpt of the snakemake workflow definition for the Vision-for-Action

project . 106

IX

X

Chapter 1

Introduction

The execution of experiments has accompanied humanity throughout its evolution as

a cornerstone in the expansion of its knowledge. In particular due to the ever-growing

complexity of research, the long term documentation of experimental procedures has

become as necessity for a sound exchange of scientific results. However, this is based

on the possibility to record the experimental purpose, execution and findings in an ex-

act, comprehensive manner and without bias of any kind. Nowadays, tedious manual

scripture has largely been replaced by digital information, making information easier

to be transferred, retrieved and duplicated. Therefore, modern scientific research relies

mainly on the acquisition and storage of this digitized data. Although raw recording

data can be easily stored and disseminated with modern technologies, interpretation of

research data is not straightforward as datasets are highly diverse between, and often

even within, scientific areas. This inhomogeneity depends highly on the respective field.

In areas that require large experimental setups, such as particle physics or high field

FMRI, there are only few data formats established by the community and companies

that produce the corresponding tools, e.g., the root format (Brun and Rademakers,

1996) and the NIfTI file format. In other fields the diversity of data is larger as scien-

tific methods and objectives require more diverse approaches. Unification would require

large-scale coordination within the community and would imply additional overhead on

the level of each experiment. A number of initiatives try to screen, collect and eval-

uate data and metadata approaches within and across communities. Some examples

here are the Human Brain Project1 (HBP), which develops a platform to gather data

from all neuroscientific areas. The German national research data infrastructure2 is a

recent initiative for systematic and sustainable research data management within and

across disciplines. However, often such a top-down approach focuses on the few com-

mon features of datasets, where it is typically already a challenge to define a set of basic

minimal metadata to superficially describe a dataset. Much less attention is devoted

to the problem of obtaining an in-depth description of a specific dataset that is consis-

tent with similar data. In light of the complexity of such in-depth metadata providing

standardized tools and workflows is a prerequisite for the implementation of sustainable

1HBP, https://www.humanbrainproject.eu/en/
2NFDI, https://www.dfg.de/foerderung/programme/nfdi/

1

CHAPTER 1. INTRODUCTION

data and metadata management on laboratory level. This permits the integration of

data and metadata on a detailed level in a standardized structure, which can later be

integrated in large scale infrastructure projects.

The diversity in data modalities and file formats promotes a heterogeneity in data

analysis steps and tools used for the extraction of scientific findings. Almost 700 data

analysis software tools3 are registered with SciCrunch4, a curated repository of scientific

resources that includes tools, databases and core facilities with a focus on data analysis

in biomedical research. Despite this large set of indexed software tools being searchable

as well as citable, many scientific findings have been found to lack reproducibility (Ioan-

nidis, 2005; Ioannidis, 2007; Baker, 2016; Eisner, 2018). One reason for this might be

usage of custom code and the neglect of tracking processing and analysis circumstances

(provenance tracking). Other reasons might be the inaccessibility of the original data,

e.g., due to loss of the original files, deprecated formats or undocumented data selection

criteria.

This issue has gained more attention in recent time and started a scientific debate

about the need for reproducibility of scientific insights, resulting in a number of publica-

tions evaluating the reproducibility of published findings (Fig. 1.1). Within this debate,

the terms replicability and repeatability (Plesser, 2018) have been used to describe dif-

ferent aspects of reproducibility. However, the definitions of all three terms are typically

limited to a small scientific community, since the restrictions by the methods used (e.g.,

laboratory equipment versus human subjects versus scientific simulation software) do

not permit a direct translation to other areas. This aggravates the communication on

this topic across communities and potentially delays the development towards a more

mature awareness of reproducibility in some scientific fields.

While reproducibility is a topic that emerged in the scientific literature already

in 1990, especially in the neurosciences it has been relatively unattended and is only

recently growing in actuality (Fig. 1.1). In addition to the terminology differences de-

scribed above, the setting of the neurosciences between biology, engineering, physics,

chemistry, computer sciences and mathematics might be another reason for this delay.

This interdisciplinarity can demand additional communication between neuroscientists

and thereby prevent the rigorous questioning of the reproducibility of findings. Another

reason might be the relative young age of neuroscience compared to more established

scientific fields. This comes with the delayed development of concepts, tools and stan-

dards, accompanied by a community awareness of the reproducibility subject.

To address the issue of reproducibility from the perspective of the availability of

data, Wilkinson et al. (2016) defined the FAIR principles. These introduce guidelines

for handling research data and metadata and are summarized in four key points. Re-

3697 results for a query of resource type = ’resource’ and ’software resource’ and ’data analysis
software’ and keyword=’analysis’, accessed on 26.08.2019

4SciCrunch, https://scicrunch.org/

2

1.1. DATA AND METADATA MODELS

Figure 1.1: Reproducibility related publications. Depicted are publications registered
by PubMedα that are related to the keywords reproducibility, replicability, repeatability,
and reproducibility in combination with neuroscience. Plotted is the fraction of match-
ing publications per year with respect to the total number of registered publications
of the same year. Some fractions related to individual keywords were down scaled for
better visualization (see legend). Data were extracted using Corlan (2004). α PubMed,
https://www.ncbi.nlm.nih.gov/pubmed/

search data should be made Findable, Accessible, Interoperable and Reusable to be of

sustainable value for the scientific community.

In this thesis we present and discuss approaches for data and metadata management

in the context of these FAIR principles. We focus on efficient and robust handling of

research data from its acquisition to analysis with the aim of easy implementation and

the usability by individual scientists as well as laboratory-scale collaborations. The

presented examples are set in the field of neuroscience, but many concepts, approaches

and tools are of generic nature and can therefore be transferred to other scientific

disciplines.

1.1 Data and metadata models

Standardization of data and metadata is a fundamental requirement for the usability of

research data. This work is based on two common, generic models for data and metadata

representation and storage. Both software projects are developed and maintained by

the German Neuroinformatics Node5 (G-Node), which is an organization that aims to

improve the infrastructure for data access, storage and analysis with an emphasis on

the field of electrophysiology. These tools form the basis for the data and metadata

acquisition workflows presented in this thesis.

5G-Node, http://www.g-node.org/

3

CHAPTER 1. INTRODUCTION

1.1.1 Hierarchical metadata in the odML model

The open metadata Markup Language6 (odML) is a versatile hierarchical framework

for the representation and storage of metadata (Grewe, Wachtler, and Benda, 2011).

While it was originally designed for electrophysiological metadata, its generic structure

makes it also applicable to other scientific contexts.

Document

Section

Properties

Document

the basis of

the metadata

collection

Section

provide the

hierarchical

structure

and context

Property

provide

annoteted

key for storage

of the

metadata

values

Figure 1.2: odML structure and objects. odML provides three objects for metadata
organization: The odML Document forms the basis of a hierarchy for metadata storage.
It can link to a number of odML Sections. Sections are used to build a hierarchical
structure and to provide context and relation between metadata. Each Section can
link to multiple Properties. These contain the actual metadata values accompanied
by essential information providing the context for interpretation of the values.

The basic concept is to use a tree-like structure of Sections to store metadata as

Properties (extended key-value pairs) in a common Document (Fig. 1.2). The Document

captures information about the metadata collection: the author of the collection, the

date of generation, a custom version specifier and a custom reference repository. The

hierarchical structure of the collection is formed by Sections which can be concate-

nated to build the branches of a tree structure (Fig. 1.3). Here, each Section carries

information about the subset of metadata it contains in form of a Section name provid-

ing a brief categorization, a definition extending on the category typically in form a

complete sentence, and a type for grouping across Sections. Additionally, a Section

can also point to an external repository or reference (e.g., a data base) or link to

or include parts of other odML structures. The Property name provides the key corre-

sponding to the stored metadata values. Each Property contains a list of value entries

and gathers the corresponding metadata as its Property attributes. All context infor-

mation provided by a Property, i.e. data type (dtype), physical unit, uncertainty

and value origin, is common to all values stored within that Property. Similar to

the Section also the Property can carry a human-readable description of the values

contained and can also reference to an external location. The value of a Property can

6
odML, https://github.com/G-Node/python-odml, RRID:SCR_001376

4

1.1. DATA AND METADATA MODELS

Section

1

0..n

+ id
+ name
+ type
+ definition
+ repository
+ reference
+ link
+ include

1
0..n

1

0..n

Document

+ id
+ author
+ version
+ date
+ repository

Property

+ id
+ name
+ dtype
+ unit
+ uncertainty
+
+ value_origin
+ definition
+ dependency
+ dependency_value
+ reference

values

Section

1

0..n

+ name
+ type
+ definition
+ repository
+ mapping
+ link
+ include

1
0..n

1

0..n

Document

+ author
+ version
+ date
+ repository

Property

+ name
+ definition

+ dependency
+ dependency_value

+ mapping

1
1..n

Value

+ type
+ unit

+ uncertainty

+ filename

+ definition

+ encoder
+ checksum

+ reference

+ value

A odML version 1.3

B odML version 1.4

Figure 1.3: odML model versions. Illustrated are odML version 1.3 (A) and version
1.4 (B). Each box represents an entity defined by the data model and is color coded.
Connections between entities are illustrated using the UML aggregation relation where
a diamond denotes the target of a connection; the numbers at source and target denote
the cardinality of each entity in the connection. Documents, Sections and Properties

can link to multiple of their child attributes, whereas each object has exactly one par-
ent objects, generating a branching, hierarchical structure. The Document additionally
contains attributes to store the author, the version, the generation date and the cor-
responding repository reference. The Section is a container for its child Sections

and Properties. The Property name acts as key associated to the actual metadata
value stored. In odML version 1.3 the value information is stored in dedicated Value

objects, whereas in in odML version 1.4 this feature is integrated into the Property

object. Here, the Property provides supplementary essential information for the in-
terpretation of the metadata value which was previously stored in the dedicated Value

object in odML version 1.3. In odML version 1.4 each object has an identifier (id) for
unique identification across files.

5

CHAPTER 1. INTRODUCTION

also depend on another Property (dependency) or another value (dependency_value).

All odML objects carry a universally unique identifier for unique identification of odML

entities even across unrelated files to ensure comprehensive provenance tracking. This

permits the referencing and inclusion of odML objects across files and projects.

Based on the presented odML objects, we can design a small example structure for

capturing metadata of an experiment involving a subject and a force recording device

(Fig. 1.4). For example, the metadata can be grouped on a first level of Sections into

hardware related or non-hardware related metadata. Here, this implies the generation

of two first level Sections, one for the description of the subject and one for the

description of the recording device. On the next level each of these groups can be

separate more detailed aspects of the experiment. Here, we only track two aspects

of the recording device: the upper limit of the force that can be recorded (Property

with name ’Maximum Force’) and the supported sampling rates of the device (Property

with name ’Sampling Rates’). The corresponding value entries to the keys provided by

the Property names are of type list as odML supports the capture of multiple values

belonging to a Property. In this example four different sampling rates are supported,

sharing the data type, unit, description and all additional attributes of the Property.

The subject is described by two Properties, the species and its weight, which are

accompanied by the required data type specification and an optional corresponding

unit specification. Finally, we also track metadata about the training the subject in

a separate subsection of the Section that describes the subject. Here, the training is

solely defined by a start and end date, captured in two corresponding Properties.

This small example demonstrates how odML objects can be used to build a hier-

archical metadata structure and group information in a logical way. The additional

attributes of Sections and Properties provide contextual information for the plain

metadata values and are essential for the interpretability of the metadata collection.

The same concepts as presented here can be used to build full-sized metadata collec-

tions capturing metadata of complex experiments (see Chapter 3). For example in the

presented example next steps could comprise the addition of more information about

the subject in additional Properties to capture the age, gender, handedness, etc or add

additional Sections, e.g., for describing details related to the recording data (recording

date, filenames, etc) or preprocessing steps (filtering, offset removal, etc).

Model revisions The projects presented in this thesis rely on different versions of the

odML library. Here we present the main differences between the odML version 1.3 to and

the current odML version 1.4. In order to simplify the usage of the odML framework

two major changes were introduced in odML version 1.4. The first change was the

merging of Value and Property entities (compare Fig. 1.3A and B). Previously, each

Property required at least one child Value. In version 1.4. this restriction is lifted, as

Properties can contain an empty list of values. The merge of the two objects prevents

value ambiguities within a Property and reduces the effective file size since the value

dependent attributes ("unit", "uncertainty", "data type" and "reference") are defined

6

1.1. DATA AND METADATA MODELS

author (str) Julia Sprenger

date (date) 01.09.2019

version (str) 1.0.0

repository (str) https://gin.g-node.org/data/dataset1/

name (str) Recording Device

description (str)

...

name (str) Subject

description (str)

...

Subject

participating

in the experiment

name (str) Species

description (str)

values (list) [Elephas pythonicus]

dtype (odml.DType) string

...

name (str) Weight

description (str)

values (list) [0.63]

unit (str) ton

dtype (odml.DType) float

...

The weight

of the subject

name (str) Start Date

description (str)

values (list) [1.1.2015]

dtype (odml.DType) date

...

Begin of the

procedure

name (str) End Date

description (str)

values (list) [1.1.2020]

dtype (odml.DType) date

...

End of the

procedure

name (str) Maximum Force

description (str)

values (list) [1000]

unit (str) N

dtype (odml.DType) float

...

The highest

permitted force

name (str) Sampling Rates

description (str)

values (list) [1, 50, 1000, 30000]

unit (str) Hz

dtype (odml.DType) float

...

name (str) Training

description (str)

...

Information on the

training procedure

Device to record

forces at high

sampling rates

Adjustable

sampling rates

Species in binomial

nomenclature

Document

Property

Section

Section

Section

Property

Property Property

Property Property

Figure 1.4: Example odML structure. The odML structure contains metadata from
an experiment involving a subject that generates a force. The metadata related to
this collection itself are denoted in the odML Document, e.g., the author. The two
top-level Sections separate subject and recording setup. Here, the recording setup is
characterized by two Properties: the maximum recordable force and the supported
sampling rates, consisting of a list of values. The subject is characterized by its species
and weight. The training information is described one level below in a Section named
Training. Here, the training is characterized solely by a start and end date.

7

CHAPTER 1. INTRODUCTION

only once for a set of values. Second, odML entities now contain a universally unique

identifier ("id"), an auto-generated identifier with extremely low collision probability.

Compatibility for odML files using the old format version is ensured via automatized

conversion functionality.

Additional features The odML core library provides an in-built mechanism to search

and retrieve Sections, Properties or values within a Document. The need to consis-

tently search for metadata entities across Documents from different sources led to the

development of an export feature of odML metadata to the Resource Description Frame-

work (RDF) format7, a general and widely used storage format of graph databases.

Multiple odML files exported to RDF can be loaded into any graph database support-

ing RDF and will be combined into a single graph. Moreover, while XML is the default

storage format, odML additionally supports storing the metadata in the text based file

formats JSON8 and YAML9. JSON is a de-facto data exchange standard between web

based and standalone computer applications. The support of JSON makes odML meta-

data more easily consumable in machine-only workflows through modern applications.

Since both XML and JSON primarily aim at machine-readability, their structure is not

easily readable by humans. odML also supports the export to the YAML file format to

provide a human readable text format of the raw metadata files.

For visualization and manipulation of metadata files, odML comes with a native

odML GUI (odml-ui10). The GUI provides a visual representation of the hierarchical

structure for navigation and editing of individual metadata entries.

1.1.2 Generic data organization via the Nix model

The Nix model is a format to store and represent combined data and metadata in

a common framework. For this six generic data objects are defined and combined

with an odML based metadata structure. The Nix model is provided with a C++

reference implementation11 and bindings for Java and Matlab. An independent Python

implementation is provided12 with version 1.5.0b3 being considered here.

The Nix model consists of six data and two metadata objects described in the

following (Fig. 1.5). Data values are captured using DataArrays capable of describing

any type of data that can be represented using a single or multidimensional array. In

addition to the values, the DataArray also describes the physical properties of the stored

data, e.g., the type of data, the physical unit and a human readable label. Additionally

the data array is connected to Dimension objects that provide detailed information

about each of the associated dimensions of the DataArray including a label, the physical

unit, a sampling interval and offset. With these two objects Nix captures all required

data for a meaningful visualization of the stored data values (e.g., see Fig. 1.6). In

7http://www.w3.org/TR/rdf-primer
8https://json.org
9https://yaml.org

10https://github.com/G-Node/odml-ui
11nixio C++, https://nixio.readthedocs.io, RRID:SCR_016196
12nixio / nixpy, Python, https://pypi.org/project/nixio/

8

1.1. DATA AND METADATA MODELS

Figure 1.5: Nix model objects. The model consist of objects for storing data and meta-
data and relations between these. Metadata is captured in a odML based structure. Ad-
ditionally, six objects are implemented to capture data and relation between these. The
main data object (DataArray) stores multidimensional data and captures the physical
attributes of the data using Dimension objects. Tags and Multitags are used to label a
subset of the data contained in a DataArray and can provide supplementary information
using Feature objects. Furthermore, Group objects can be used to represent logical re-
lations between objects and Source objects provide background information about the
origin of the data. Blocks and Files represent a complete dataset and file, respectively.
Each of the data objects (except Dimensions) can link to a corresponding metadata
Section providing additional information specific to that data object. Figure adapted
from Nix documentation (https://nixio.readthedocs.io/en/latest/data_model.html, ac-
cessed Aug 2019).

9

CHAPTER 1. INTRODUCTION

1

0..n

0..n

0..n

1

1..n

1..n

0..m

1
0..n

0..n

1

0..n

1

Block

+type: String
+name: String
+definition: String

DataArray

+type: String
+name: String
+definition: String
+unit: String
+label: String
+data: NDArray

Source

+type: String
+name: String
+definition: String

Soma Axon Terminals

width [µm]

h
e
ig

h
t[

µ
m

]

Laser Scanning Microscope

Data Model

Metadata Model (odML)

Example Data 1

Segment 1 Event 1

time[ms]

v
o
lt
a
g
e

[m
V

]

Recordingchannel 2

Example Data 2

Dimension

+label: String
+unit: String
+sampling_interval: Double
+offset: Double

Tag

+type: String
+name: String
+definition: String
+units: String[]
+positions: Double[][]
+extents: Double[][]

Figure 1.6: Nix model application examples. The model can capture different va-
rieties of data, e.g., electrophysiological recording traces (example 1) and imaging
data (example 2). Both signals types can be described by the same Nix object types.
Figures adapted from Nix the documentation (https://github.com/G-Node/nix/wiki/
The-Model).

addition, subsets of the data stored in a DataArray can be tagged via a Tag or Multitag

object. These objects can be used to provide more information about a particular subset

of values, e.g., mark the time points of stimulus presentation in a continuous recording

signal (Fig. 1.6). Furthermore, Source objects can be used to track the origin of data,

e.g. relate a downsampled signal to the original signal. Group objects can be used for

logical grouping of other Nix data objects. All of these objects are coordinated via

Block objects, which again are, together with the metadata objects, contained in a Nix

File object that represents a complete dataset. The metadata objects used in the Nix

framework are adopted from the odML framework. All data objects within Nix , except

for the Dimension object, can link to a single Section in the metadata collection of the

Nix File, which contains additional information about the data object. Depending on

the declared types of the linked data and metadata object, this relation is interpreted

uni- or bidirectional, i.e. the metadata Section provides details about the data object

or the metadata object is additionally defined via the data object.

Nix is accompanied by detailed user-level documentation in form of an extensive

10

1.2. THESIS OVERVIEW

wiki13 and online documentation14 including tutorials and demos. Furthermore, the

Nix model is natively integrated in the electrophysiology recording system RELACS ,

the EEGbase15 a system for storage, management, sharing and retrieval of EEG data

as well as Neo, a Python tool for standardized representation of electrophysiology data

(Chapter 4).

1.2 Thesis overview

In Chapter 2 we describe two published datasets of a complex, electrophysiological ex-

periment including an extensive metadata collection used in a collaborative setting. We

describe the process of data and metadata preparation required for the data publication

and discuss the pipeline used in this publication to identify strengths and shortcomings

of the presented approach. In Chapter 3 we present odMLtables, a tool that facilitates

the collection of metadata in the standardized odML format and that emerged from the

implementation of the previously presented pipeline. We demonstrate the embedding

of odMLtables in a real-world metadata application and highlight the features of the

tool. Chapter 4 complements the previous section by introducing tools for standardized

data representation and demonstrates their application in the context of data and meta-

data handling based on three example scenarios. Chapter 5 goes beyond the pipeline

approach presented in Chapter 2 by introducing the concept of modern workflow man-

agement software for the efficient organization and structuring of scientific projects. We

demonstrate the integration of the previously presented tools in a systematic fashion

using modern workflow management software to coordinate the application of data and

metadata software in a neuroscientific project. Finally, in Chapter 6 we discuss the

presented approaches and provide an outlook on future development of the tools and

concepts.

13
Nix wiki, https://github.com/G-Node/nix/wiki

14
Nix documentation, https://nixio.readthedocs.io

15EEGbase, http://eegdatabase.kiv.zcu.cz, RRID:nif-0000-08190

11

CHAPTER 1. INTRODUCTION

12

Chapter 2

Sharing data

- Publication of two complex

electrophysiological datasets

Scientific progress is the result of scientific findings that build on each other. To validate

such findings, typically hypotheses are proposed and tested against experimental data

using statistical methods. The resulting finding and interpretation is communicated

to other scientists via the publication of a manuscript. In recent years, however, the

practice of publishing papers has been criticized for a lack of robustness. Attempts in

a number of scientific fields including life sciences, among others, to reproduce pub-

lished scientific findings failed to support the same conclusions (Baker, 2016; Fidler et

al., 2017; Pashler and Wagenmakers, 2012; Ioannidis, 2005; Goodman and Greenland,

2007; Ioannidis, 2007; Open Science Collaboration, 2015). To qualitatively distinguish

between different levels of reproducibility, a collection of terms has been applied: re-

producibility, replicability, repeatability (Plesser, 2018; Drummond, 2009). However,

the specific interpretation of each of these terms highly depends on the scientific field

they are applied in. Repeatability, for example, can be defined as the re-performance

of the same experimental study using identical components. However, for computer

sciences repeating an experiment might be re-running of the same software simulation

on the same machine using the same software packages. In consequence, the feasibility

of repeating a study highly depends on the field. For example repeating a study by

running the same code on the identical machine might be a realistic project, whereas

running the identical experiment in psychology is not (Anderson et al., 2016). A widely

accepted version of reproducibility terminology by Goodman and Greenland (2007) is

therefore omitting the terms ’replicability’ and ’repeatability’ for simplification and de-

fines instead three different types of reproducibility (from Plesser, 2018):

13

CHAPTER 2. SHARING DATA

Methods reproducibility

’provide sufficient detail about procedures and data so that the same procedures

could be exactly repeated.’

Results reproducibility

’obtain the same results from an independent study with procedures as closely

matched to the original study as possible.’

Inferential reproducibility

’draw the same conclusions from either an independent replication of a study or

a reanalysis of the original study.’

The definition of ’methods reproducibility’ highlights a central aspect of scientific

publications: the underlying data. Reproducing findings of publications is difficult for

older publications (Vines et al., 2013; Rostami et al., 2017), which to a large part can

be accounted for by the decreasing ability to retrieve of the original datasets. The obli-

gation to provide research data to other scientists is a practice promoted by increasingly

many funding organizations (e.g. NIH since 20031, EU Horizon 2020 Open Research

Data Pilot2 since 2014) and for publications in a number of journals (e.g. Springer

Nature3), however, the readiness to comply is rather low (1/10 publications provides

research data on request (Savage and Vickers, 2009)). To address the problem of meth-

ods reproducibility for original research articles, a number of new journals were put

into place, which invite to publish replications of the original articles in computational

science 4, economics5, psychology6 and neuroscience (Yeung, 2017), as well as original

research data (e.g. ScientificData7).

To improve the situation of data availability, Wilkinson et al. (2016) defined the

FAIR principles, a set of guidelines to achieve sustainable data and metadata manage-

ment. The four key objectives are to make research data

F indable by generating unique and persistent identifiers for data and meta-

data files. This includes the generation of a comprehensive metadata

collection, clearly linked to the data via the identifier and vice versa.

This way, datasets and corresponding metadata can be registered and

indexed and are findable via search queries.

A ccessible by making data and metadata retrievable via their unique identi-

fier in a standardized way. The applied standards and protocols should

be open, free and universal and the accessibility of either data or meta-

data should not depend on the availability of the other.

1https://grants.nih.gov/grants/policy/data_sharing/
2https://ec.europa.eu/research/participants/docs/h2020-funding-guide/cross-cutting-issues/

open-access-data-management/data-management_en.htm
3https://www.springernature.com/gp/authors/research-data-policy/data-availability-statements/

12330880
4ReScience, http://rescience.github.io/
5http://www.economics-ejournal.org/special-areas/replications-1
6https://www.apa.org/pubs/journals/xge/replication-articles
7ScientificData, https://www.nature.com/sdata/

14

I nteroperable by using standardized, broadly applicable tools and lan-

guages for knowledge representation. This includes using FAIR ter-

minology and providing qualified references to other metadata.

R eusable by providing comprehensively described data and metadata in-

cluding a clear license statement and detailed provenance information

using community standards.

Complementing these guidelines, a number of sites have become available for hosting

scientific data (Zenodo8, figshare9, Pangaea10, BMC Research Notes11, DataDryad12,

GIN13, EuDat14, Research Data Australia15, see also Assante et al. (2016)) and pub-

lishing data descriptor papers (ScientificData16, DataScience17, see also Candela et al.

(2015)). It has been shown that mandated data archiving upon publication highly im-

proves data availability (Vines et al., 2013). However, a central prerequisite for the

usability of the dataset is the existence of a comprehensive metadata collection (Fergu-

son et al., 2014; Parekh, Armañanzas, and Ascoli, 2015; Ascoli et al., 2017). Going one

step further, Chen et al. (2019) show that making only the data (and metadata) available

is not sufficient for reproducible science but rather, data also need to be accompanied

by software packages used for further analysis. In the optimal case this encompasses

a detailed, step-wise description of the motivation for an analysis workflow. Jomhari,

Geiser, and Bin Anuar (2017) demonstrate that even for datasets surpassing commonly

available hardware capabilities (e.g., due to memory limitations), e.g. from particle

physics, making the effort of publishing the data is possible and can lead to successful

reuse of the data.

The publication of a dataset adhering to the FAIR principles therefore involves a

number of concepts, but also technical tools to enable this process. To demonstrate what

this entails in practice, here we report on our initial efforts to establish such knowledge

for electrophysiology data in the context of the workflows established for a concrete

data publication, and discuss critically that implementation. We provide an example of

two complex published datasets from the field of neuroscience (Brochier et al., 2018),

demonstrating the richness of data and metadata involved in such an experiment and

the concepts to prepare the data for analysis and publication. We present the pipeline

used for metadata aggregation and discuss its strengths and shortcomings. Parts of the

conceptual underpinnings of the pipeline are published in Zehl et al. (2016) where they

serve as example cases for metadata handling practices. In the following we describe

the published datasets based on Brochier et al. (2018).

8Zenodo, https://zenodo.org/
9figshare, https://figshare.com/

10Pangaea, https://www.pangaea.de
11BMC Research Notes, https://bmcresnotes.biomedcentral.com/ & https://bmcresnotes.

biomedcentral.com/about/introducing-data-notes
12DataDryad, https://datadryad.org/
13GIN, https://gin.g-node.org/
14EuDat, https://eudat.eu/
15RDA, https://www.ands.org.au/online-services/research-data-australia/rda-registry
16ScientificData, https://www.nature.com/sdata/
17DataScience, https://datascience.codata.org/

15

CHAPTER 2. SHARING DATA

In Brochier et al. (2018) we publish two complete high-dimensional electrophysiolog-

ical datasets containing Utah Array recordings from monkey motor cortex. Recording

subjects are two macaque monkeys (monkey L and N) which performed a complex

instructed delayed reach-to-grasp task. Each recording contains continuously sampled

data from 96 electrodes accompanied by the corresponding spiking activity. Spikes were

extracted during online recording and offline sorted using the Plexon Offline Sorter18.

Electrophysiological data are accompanied by a number of behavioral and control sig-

nals. Detailed metadata were aggregated and are provided in the odML format (see

Chapter 1 and Section 2.3).

Complex datasets, as the two provided here (high-dimensional, multi-scale during

complex behavior), are a challenge for performing reproducible analysis. Besides the

often rather variable nature of the circumstances under which such data were recorded,

the data additionally experience a number of often interactively performed preprocess-

ing steps before they can be used in actual data analyses. Without a detailed knowledge

about all these steps, the actual data analysis may be biased or strongly affected. In

most cases, electrophysiological data available as open source are in this respect not

sufficiently annotated and documented. For this reason, we provide here a comprehen-

sive description of how and under which circumstances the datasets were recorded as

well as a detailed description of preprocessing steps that need to be considered before

performing analyses on the data. We additionally publish a machine-readable format

of these metadata including our parameters and results of the described preprocessing

steps. We are aware that, despite a high level of investment in this process, all pro-

vided information may not be sufficient for the reproducible analysis of such data. The

reason is that reproducible workflows including the provenance trail are not yet estab-

lished for electrophysiological neuroscience, especially not for such complex experiments

as presented here.

2.1 Relevance to the field

The published datasets contain rare, multi-channel recordings from a complex electro-

physiological setup. There are very few datasets of this type of experiment with this

level of complexity available19, wherefore we provide a valuable addition to the collec-

tion of openly available datasets. The datasets are interesting for multiple reasons and

can be used in a variety of contexts:

• Public datasets are of high value for teaching and demonstration purposes. Es-

pecially for teaching, it is important to not only work with toy examples, but

having real-world data at hand. This improves the teaching quality and provides

a better insight into the field. For teaching advanced analysis methods that ana-

lyze the correlative properties of neuronal dynamics, corresponding parallel data

is essential, such as the provided dataset.

18Plexon Offline Sorter, https://plexon.com/products/offline-sorter/
19published datasets from Utah array recordings in ScientificData: 1 (Brochier et al., 2018), CR-

CNS.org: 1 (only spiking activity); date of access: 30 August 2019

16

2.1. RELEVANCE TO THE FIELD

• For analysis of coordinated population activity of neural networks in the form

of the local field (LFP) potential (Mitzdorf, 1985; Logothetis and Wandell, 2004;

Einevoll et al., 2013), this datasets provides the opportunity to study LFP activity

exhibiting wave activity across a spatially extended volume of cortex (Denker,

Zehl, et al., 2018).

• The datasets contain spiking activity from approximately 100 neurons recorded

simultaneously. This permits analysis of coordinated spiking activity, e.g., via

correlation analysis techniques (Torre, Canova, et al., 2016; Torre, Quaglio, et al.,

2016; Quaglio, Yegenoglu, et al., 2017; Quaglio, Rostami, et al., 2018).

• The availability of LFP as well as spiking data invites to study the relation between

the two modalities, e.g., by relating synchrony in spiking activity to beta band

power in the LFP (Denker, Roux, et al., 2011).

• In addition to spiking and LFP data, the dataset is also rich in behavioural as-

pects, since the monkey is performing a complex commonly investigated delayed

reach-to-grasp task (Smeets, Kooij, and Brenner, 2019; Runnarong et al., 2019).

These datasets provide the opportunity to relate the previously described neuronal

analysis to the behaviour of the animal.

• The published datasets can serve as first application target for the development

of new analysis methods for LFP and spiking activity. Especially needed are,

e.g., analysis methods applicable to hundreds and more simultaneously recorded

spike trains since recent technical development rapidly increases the number of

electrodes that can be recorded from in parallel. Most currently available methods

are already approaching limits with respect to their demands for compute time and

memory with current datasets due to combinatorial explosion (Seo et al., 2015;

Jun et al., 2017). An example of methods that overcome combinatorial issues are

dimensionality reduction methods like Gaussian-Process Factor Analysis (GPFA)

(Yu et al., 2009).

• The published datasets together with the detailed description of metadata sources

can serve as a template for development of a comprehensive metadata tracking

system for neuroscientific experiments. Parts of this development are presented

in later sections of this manuscript.

• The correct identification of spikes based on a continuous recording trace (spike

sorting) is a field of active research (Rey, Pedreira, and Quian Quiroga, 2015;

Lefebvre, Yger, and Marre, 2016; Sukiban et al., 2019). For the evaluation of spike

sorting algorithms, the availability of testing data is critical. With this dataset we

provide raw recording traces, automatically extracted threshold crossing events as

well as a manual spike sorting to compare new spike sorting algorithms to.

17

CHAPTER 2. SHARING DATA

2.2 The experiment

The experiment is a delayed reach-to-grasp task performed by macaque monkeys. The

basic components of the experiment are displayed in Fig. 2.1. The monkeys are trained

to attend two cues coding for the grip type and force required to pull the object. After

the second cue the monkey performs the movement, pulls the object and holds it to

receive a reward. At the same time neuronal activity is recorded from motor and

premotor areas of the cortex via a chronically implanted Utah Array.

The subjects of the published datasets are two Rhesus macaque monkeys (Macaca

mulatta) which were trained to perform the delayed reach-to-grasp task prior to implan-

tation of the recording arrays. Details on the two subjects are summarized in Table 2.1.

Depending on the monkey character and learning abilities, the different instruction steps

(accustoming to the experimenter, setup, different versions of the task) require several

months of daily training. The training was completed when a monkey had an average

success rate of 85% of the trials in the standard task setting.

The two monkeys differ in gender, active hand of the task and character, resulting

in different behaviours observed during the recording task. As monkey N is rather calm

and less motivated he is in general performing shorter sessions and less trials per session

as monkey L, who is eager to work (see Table 2.1). A recording day typically consisted

of multiple recording sessions, whereas each session lasts between 10 and 20 minutes

resulting in an average working time per weekday of 1.5 hours. Weekends and holidays

were usually excluded from training and recording.

For recording of neural activity, each monkey had a single Utah array20 implanted

in the motor cortex contralateral to the active hand. The Utah array is an electrode

array with 100 electrodes arranged in a 10 × 10 grid. 96 of 100 of the iridium coated

electrodes are used for recording (Fig. 2.2). The individual electrodes are 1.5mm long,

400µm apart and have an average pre-implantation impedance of 50kΩ. The electrode

array is connected to a head stage via a fiber bundle connecting individual electrodes

to the contact of the CerePort Connector, which is a connector external to the skin

permitting the daily coupling of the implant to the recording setup. In addition to the

array electrodes, one ground and two reference electrodes are implanted. During the

implantation surgery the skull was opened and the dura removed to pneumatically insert

the Utah array into the cortex. The dura and skull were closed, whereby the cables

were arranged to lead to the connector which was attached to the skull on the other

hemisphere. The Utah arrays were implanted a few millimeters anterior to the central

sulcus and they were rotated before implantation to cover the arm/hand representation

of the primary motor cortex as well as parts of premotor cortex (Fig. 2.2).

The task the monkeys had to perform involved grasping an object using one of two

grip types: side (SG) or precision grip (PG). Detailed sketches of the different grips

are depicted in Fig. 2.1A center and right panel. For both grip types the position of

thumb (T), index (I) and middle (M) finger are indicated relative to the profile of the

object. The force required to pull the object towards the monkey was either about

20Blackrock Microsystems, Salt Lake City, UT, USA

18

2.2. THE EXPERIMENT

Figure 2.1: Components of the Reach-to-Grasp experiment. A) The monkey is lo-
cated in a monkey chair, his active hand resting on the home switch (left panel). The
monkey performs an instructed, delayed reach towards an object. Two grip conditions
(side grip/precision grip (SG/PG, respectively)) can be instructed via visual cues. B)
Visual cues are presented via five LEDs located at the height of the monkeys eyes. The
monkey initialized a trial by holding the home switch with his active hand for 400 mil-
liseconds, then the central LED is activated and stays active for the complete trial. Two
complementary cues are presented with a delay of 1000 milliseconds, coding for the grip
type and the force needed to move the object. Of the four corner LEDs, always two
neighboring ones are activated. The two vertical arrangements code for the grip type
and the horizontal ones for the force type. After the second cue (GO-ON), the monkey
releases the home switch (SR-ON), reaches for the object (hold start, HS) and holds it
for 500 milliseconds. Then a reward is delivered and the monkey can initiate the next
trial by returning to the resting configuration and holding the home switch again. C)
The data acquired during a recording session comprise neural activity signals, as well as
behavioral and control signals. Metadata is captured in multiple formats, encompassing
hard- and software components and settings as well as information about the subject
and post-processing steps performed on the data. Figure modified from Brochier et al.
(2018).

19

CHAPTER 2. SHARING DATA

monkey L monkey N description
Monkey
gender female male
birth date 15th March 2004 15th May 2008
weight 5kg 7kg
active hand left right

character

eager to work
quick
efficient
nervous

slow learner
calm
less motivated

Utah array rotation 216◦ 239◦

Recording
session name (*) l101210-001 i140703-001
session files *.ccf 108.2 kB *.ccf 187.1 kB cerebus configuration

*.nev 287.7 MB .nev 168.3 MB
digital events
unsorted spikes times
spike waveforms

*-02.nev 287.7 MB *-03.nev 168.3 MB
digital events
sorted spikes times
spike waveforms

*.ns2 8.5 MB *.ns2 204.7 MB
analog signals of sensors
LFP (only monkey N)

*.ns5 4.1 GB *.ns6 5.8 GB raw neuronal signal
*.odml 2.7 MB *.odml 2.3 MB metadata

recording start Fr, 10th Dec 2010 10:50am Th, 3rd Jul 2014 10:41am
recording duration 11:49 min 16:43 min
daily recording id 1 1
number of recordings
same day

9 3

total daily
recording time

01:28 h 00:51 h

Performance
recorded trials 204 160
trials performance
correct/error (grip error)

135 69 (12) 135 19 (16)

trial types
SG-LF/SG-HF

41 30 35 35

trial types
PG-LF/PG-HF

31 33 35 36

Spike sorting
SUA 93 156
MUA 49 19
electrodes with SUA 65 78
electrodes with
SUA or MUA

86 89

Table 2.1: Overview of monkeys, recording session files and dates, spike sorting and
monkey performance. The monkeys differ in gender, age, weight and active hand used
for the task. Information is provided about individual recording files, sessions, perfor-
mance of the monkey as well as single unit (SUA) and multi unit activity (MUA).

20

2.2. THE EXPERIMENT

med

ven

cau ros

PMdM1

PMv

monkey L

M1

PMd

PMv

monkey N

PMv

PMd

M1

69 70 38 15 19 25 274837 24

71 72 40 50 54 21 294239 26

73 74 43 46 52 62 314441 28

75 76 47 56 58 60 645145 30

77 78 49 55 57 59 615382 32

79 80 86 89 91 94 638784 95

67 68 36 17 13 23 20535 22

65 66 34 9 11 12 16733 18

12 3 6 8 10 144-1 -1

81 85 90 92 93 968883 -1-1

239°

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 10
0

3 4 5 6 7 8 9 1021

216°

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 10
0

69 70 38 15 19 25 274837 24

71 72 40 50 54 21 294239 26

73 74 43 46 52 62 314441 28

75 76 47 56 58 60 645145 30

77 78 49 55 57 59 615382 32

79 80 86 89 91 94 638784 95

67 68 36 17 13 23 20535

22

65 66 34 9 11 12 16733

181 2 3 6 8 10 14

4

-1

-1

81 85 90 92 93 968883

-1

-1

a

b

d

c

e

Figure 2.2: Implant locations of the Utah arrays. The figure displays the anatomical
location of the Utah Array of both monkeys after implantation as well as the fabrication
settings of each array provided by Blackrock. (a) Schematic drawing of a macaque cortex
with implant location of the array of both monkeys. Both arrays were implanted along
the central sulcus and overlapping the putative border (dotted line) between primary
motor cortex (M1) and dorsal or ventral premotor cortex (PMd or PMv) of the right
hemisphere. (b, d) Exact location of the array for each monkey in the close-up picture
of the implantation site taken during the surgery (length of an array side is 4mm). The
central sulcus, the arcuate sulcus and the superior precentral dimple are emphasized as
thick black lines (to the left, right and top, respectively). (c, e) Scheme of each array
in a default array orientation where the wire bundle (indicated with white triangles
in (b-e)) to the connector points to the right. Each array scheme shows the 10-by-
10 electrode grid with the electrode identification numbers (IDs) defined by Blackrock
(black numbers) and the location of the non-active electrodes (indicated in black as
ID = −1). Gray numbers show an alternative set of connector-aligned electrode IDs,
assigned based on electrode location with respect to the connector of the array, which
are more practical for data analysis and comparisons across monkeys. In order to best
cover the arm/hand representation of the primary motor cortex, each array was rotated
for the implantation. The center of rotation is indicated by a colored triangle (b-e),
stating below (in c and e) the degree of rotation for each array.

21

CHAPTER 2. SHARING DATA

1N (low force) or 2N (high force). In a trial the monkey was always instructed by the

first cue (CUE) about the grip type (SG/PG) and with the second cue (GO) about the

force level (LF/HF), resulting in 4 different trial types (SGLF, SGHF, PGLF, PGHF)

possible (Fig. A.1). The second cue is presented with 1s delay after the first. In this

time the monkey has to memorize the presented grip type and can prepare for the

movement, which can be initialized after the second (GO) cue. Cues are presented by

combinations of two of five illuminated LEDs. The encoding of the grip and force type

can be seen in Fig. 2.1B (CUE-ON and GO-ON). The setup consisted of three main

parts, the neural recording platform for acquisition of neuronal signals, the experimental

apparatus providing the environment for performing the task and the behavioral control

system controlling and coordinating the task procedure (Fig. A.2, see also Appendix A).

Differences between the datasets In principle, the same setup was used for both

monkeys, however, small deviations exist which are highlighted in the corresponding

Figs. 2.2, A.2 and A.3 in yellow (monkey L) and red (monkey N). The four main

aspects are

Recording Arrays The datasets are recorded using different Utah arrays. This in-

cludes a different electrode mapping as well as a different implant location.

Connecting Hardware Usage of different hardware for connecting the implant with

the data acquisition system. The two headstages (samtec/patient cable) influence

the recording quality by their specific electrical properties.

Software versions and settings The recording software versions and setting differ,

since an update was available between the recordings. This includes the usage

of different file extensions for recordings of continuous data (ns5 in monkey L

vs ns6 in monkey N) and additionally a downsampled and filtered version of the

neural data being recorded in parallel in the ns2 format for monkey N, which was

not available by the software for monkey L. Furthermore, the number of samples

extracted online for each of the threshold crossing events was increased from 39

samples in monkey L to 48 samples in monkey N.

Experiment Control The LabView program controlling and monitoring the task was

updated which leads to the usage of different binary coding for digital events

(Table 2.2).

After the recordings, a number of preprocessing steps (pre in the sense of before the

actual upcoming data analysis, but being the post-processing after the recording) were

performed. This includes (i) the translation of the digital events from a bit code to a

human-readable format, by putting the events in context of the expected executed trial

event sequence, (ii) the offline detection of behavioral trial events and object load force

from the analog signals, and (iii) the offline spike sorting.

In addition to the preprocessing steps that needed to be performed to gain more

content of the raw data, some technical validations of the data also had to be conducted

22

2.2. THE EXPERIMENT

decimal
code

(8-bit) binary code trial interpretation

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 monkey
65296 0 0 0 1 0 0 0 0 TS-ON L,N
65280 0 0 0 0 0 0 0 0 TS-OFF L
65344 0 1 0 0 0 0 0 0

WS-ON
L

65360 0 1 0 1 0 0 0 0 N
65360 0 1 0 1 0 0 0 0

PG-ON
(CUE-ON)

L
65365 0 1 0 1 0 1 0 1 N
65354 0 1 0 0 1 0 1 0

SG-ON
L

65370 0 1 0 1 1 0 1 0 N
65344 0 1 0 0 0 0 0 0

CUE-OFF
L

65360 0 1 0 1 0 0 0 0 N
65353 0 1 0 0 1 0 0 1

LF-ON
(GO-ON)

L
65369 0 1 0 1 1 0 0 1 N
65350 0 1 0 0 0 1 1 0

HF-ON
L

65366 0 1 0 1 0 1 1 0 N
65385 0 1 1 0 1 0 0 1

SR
(+LF) L,N

65382 0 1 1 0 0 1 1 0 (+HF) L,N
65509 1 1 1 0 0 1 0 1

RW-ON
(+CONF-PG) L,N

65514 1 1 1 0 1 0 1 0 (+CONF-SG) L,N
65376 0 1 1 0 0 0 0 0 GO-OFF/RW-OFF L,N
65312 0 0 1 0 0 0 0 0

STOP
L,N

65280 0 0 0 0 0 0 0 0 L
65391 0 1 1 0 1 1 1 1

ERROR (+switch)
L

65359 0 1 0 0 1 1 1 1 L
pump LED switch TS LED

c bl tr tl br

Table 2.2: Translation table of 8-bit binary to decimal event codes and their interpre-
tation in a trial context. The 8-bit binary event code created by LabView states the
activation (bit status 1) and deactivation (bit status 0) of the LEDs of the cue system
(c:center, t:top, b:bottom, l:left, r:right), the table switch (switch), the reward pump
(pump) or the trial start (TS) internally set by LabView. During each trial the (8-bit
binary) status of these devices/settings (cf. bottom row) were sent from LabView to the
NSP of the Cerebus DAQ system (Figure 2). There, the event codes were converted to
a decimal code of the bit sequence assuming another byte with all bits set to 1 in front.
The decimal event codes are found in the nev files with a time stamp. The correct in-
terpretation of these events in context of a trial are here indicated in the second column
from the right. Due to different versions of the LabView control program for monkey L
and N the decimal codes for the same event may differ between the monkeys (cf. first
column from the right). Some event codes (65381, 65386, 65390, 65440, 65504) are not
listed here, because they do not have a concrete meaning and occur only sporadically
in the nev file due to a mistake in the sampling of the digital events - they have to be
ignored. Except for the "ERROR" codes, the event codes are sorted in sequential order
from top to bottom with respect to the task, i.e. their order corresponds to the sequence
found in the nev file in a reach-to-grasp trial. Note that some events are represented
by the same decimal codes and are just differently interpreted due to their sequential
occurrence in a trial (cf. TS-OFF and STOP, as well as WS-ON and CUE-OFF).

23

CHAPTER 2. SHARING DATA

(see also Appendix D). These technical validations include the correction of the irregular

alignment data files of the recording system and a general quality assessment of the data.

In order to validate the quality of the recording, a series of algorithms were applied to

the data. On the one hand the quality of the LFP signals was assessed per electrode and

per trial by evaluating the variance of the corresponding signal in multiple frequency

bands. On the other hand the quality of the offline sorted single units (Appendix B.3)

was determined by a signal-to-noise measure. In addition, noise artifacts occurring

simultaneously in the recorded spiking activity were detected and marked.

2.3 The metadata structure

All aggregated metadata for a single recording session are collected in a separate odML

file (Table 2.1). Within an odML file, information is organized in a hierarchical fashion,

following a schema that was defined and continuously refined during the course of the

set up of the metadata processing pipeline. Fig. 2.3 shows an exemplary part of the

metadata collection of the recording session of monkey L. The odML files contains

the following eight top-level sections: Project (general information on the reach-to-

grasp project), Subject (information on the monkey), Setup (details of the experimental

apparatus), Cerebus (settings of the recording system), UtahArray (information on

the multi-electrode array including spike sorting results and the corresponding quality

assessment), Headstage (general settings), Recording (task settings, trial definitions with

event time stamps and periods) and PreProcessing (results of LFP quality assessment

and general information on the spike sorting procedure).

Each top-level Section contains a branch structure built from Sections to logically

organize the information about the specific aspect of the experiment. For example, the

Subject Section contains nine Properties (denoted by a folder icon), and multiple

Sections beneath, among them for example a Training Section and ArrayImplant

Section (denoted by a collapsible folder icon in Fig. 2.3). All metadata available

describing the training of monkey L are the coach (Thomas Brochier), start and end

date of the training period (June 2010 - September 2010) and a comment stating that

the training was easy and fast. Larger numbers of metadata are stored for describing the

recording array used for the recording. Here, the Section UtahArray contains general

information about the hardware (material, dimensions, etc) and detailed information

about each electrode is contained in the Electrode Sections. Each electrode Section

contains information about the electrode identity and physical location, the impedance

value and offline sorting results for data recorded here (not shown in Fig. 2.3). The

metadata collection of monkey N has an analogous structure.

2.4 Data and metadata processing pipeline

The metadata information as described Section 2.3 was aggregated from multiple files

and formats into a single file in the odML format (Section 1.1.1). This aggregation

requires access to, and interpretation of a variety of files and formats, extraction of the

24

2.4. DATA AND METADATA PROCESSING PIPELINE

Figure 2.3: Schematic metadata collection of recording session l101210-001
as rendered by the GIN webinterface. Properties are displayed in the form
of <Property Name>: <List of Values> (<Property Description>). Individual
Sections are unfolded via user interaction to display the underlying metadata structure.
Figure modified from https://gin.g-node.org/INT/multielectrode_grasp/src/master/
datasets/l101210-001.odml.

25

CHAPTER 2. SHARING DATA

corresponding information and integration in the designated location a pre-designed

odML structure. In the pipeline used here (Fig. 2.4), the construction of the odML

structure of a particular recording session is strictly separated from the enrichment

of the structure with metadata content. In a first step, an odML structure with de-

fault metadata entries is set up based on multiple Python scripts generating individual

branches of the odML structure. Since the particular structure required for a recording

session depends on the specifications of the recording, this process depends to some

extend on the metadata to be added (see Fig. 2.4, red arrows). This interdependency

requires the metadata to be loaded and partially interpreted prior to the initialization of

the structured metadata collection. One example for such a dependency is the existence

of spike sorted data after offline spike sorting. Here, first the source files need to be

evaluated to extract if the particular session was already sorted to construct the meta-

data structure accordingly such that it can later accommodate potential spike sorting

metadata.

After construction of the odML structure, metadata information is added via a set

of custom enrichment functions, i.e., filling available metadata into the structure. This

enrichment process is split into different functions that first extract information from

the different specialized metadata source file formats and add this data in the odML

structure. In the enrichment process, the location of the target Property in the structure

is implemented by exploiting the filter functionality of odML. This way, filling the odML

structure requires no detailed information regarding the odML hierarchy. This provides

some degree of flexibility in dealing with variations in the odML structure, i.e. for

different variations of the task or through the continuous improvement of the structure

over the course of the experiment. However, given the large number of metadata values

to fill, this is computationally more intense than accessing the target location directly

via its hierarchy path. Finally, after building and enriching the metadata collection the

odML file with more than 1300 Sections, 8000 Properties and about 10000 Values is

saved.

Setting up this pipeline required preparatory work on multiple levels: A) The manual

preparation of the odML structure in form of odML templates in dedicated Python

scripts. These scripts mostly comprise between 700 and 1700 lines of code and contain

the generation of all odML Sections and Properties including default Values, since

odML version 1.3 used at that time requires a minimum of one Value per Property

(see Section 1.1.1). B) The preparation of the metadata source files in the required

format. This involved manual offline spike sorting using the Plexon spike sorter to

generate a sorted nev file and spike sorting mat and text files containing the resulting

metadata. For a single recording session this process requires a few working hours of a

trained scientist. Additionally, xls sheets following the odMLtables standard needed to

be set up containing information about the recording (sub)session, the monkey and the

recording setup. Furthermore, a single text file providing the mapping spatial systems

of electrode IDs used in the experiment (brain_aligned_elids.txt) and the results of

three Matlab based preprocessing scripts for detection of behavioural events based on

26

2.4. DATA AND METADATA PROCESSING PIPELINE

Figure 2.4: Schematic metadata aggregation pipeline used in Brochier et al. (2018).
The odMLGenerator script (middle box) accesses odML templates (left box) and meta-
data source file in different formats (right box). Based on a configuration file, first the
structure of the odML is set up relying on Python scripted odML templates. In a second
step, the structure is enriched with information content from the metadata files. In-
formation from these files is extracted using a variety of different tools (reachgraspio,
odMLtables, the Python csv and scipy packages) and added to the pre-built odML struc-
ture via custom enrichment functions to generate the final metadata collection. Setting
up the odML structure requires information about the metadata and the configuration
(red arrows), which is extracted from the metadata files prior to the building of the
odML structure.

27

CHAPTER 2. SHARING DATA

continuous signals (event time markers and load detection) and the quality checks for

continuous signals in multiple frequency ranges and electrodes (rejections) need to be

provided. Most of these metadata source files are recording session specific and need to

be generated after the recording was performed. Typically, these files are generated by

the experimenter, however, due to the time required for this manual step and the amount

of available data, not all of this information becomes available immediately, possibly

only years after the experiment. C) The implementation of the central script to generate

the resulting odML (Fig. 2.4 odMLGenerator.py) by combining the odML structure from

the templates with the content of the metadata sources. Implementation of this script

needs detailed knowledge about both aspects of the odML generation process to be able

to combine the two.

2.5 Data loading and enrichment with metadata

To benefit from a complete metadata collection in the odML format when loading the

original data the metadata should be made easily accessible in combination with the

data. This permits the user to access the complete information available during later

processing and analysis steps, e.g. for selection of specific trial time periods or record-

ing signals without artifacts. For this, it is essential to combine the information from

the metadata collection with the data as the user otherwise needs to switch between

different sources and structures for retrieving information. This would introduce addi-

tional, unnecessary dependencies in the processing and analysis code. We provide the

ReachGraspIO Python class which extends the Neo data structure upon loading with

metadata (Appendix E). The ReachGraspIO inherits from the Neo BlackrockIO and

exploits its functionality to read data from nsX21 and nev file formats (Fig. 2.6). It re-

turns a Neo Block based on the original structure generated by the Neo BlackrockIO.

The API to interact with the data is therefore the same when using directly the Neo

BlackrockIO and the ReachGraspIO. For a detailed description of the Neo structure

and IOs, see Chapter 4.

The application programming interface (API) of the ReachGraspIO is almost iden-

tical to the API of the BlackrockIO. The ReachGraspIO uses slightly different default

parameters, which are adjusted to the datasets generated by the Reach-to-Grasp exper-

iment. The usage of the ReachGraspIO is demonstrated in an example Python script,

which loads the data and visualizes the recording signals at the time point of a trial

start (Code Listings 2.1 and 2.2 and Fig. 2.5). Identification and selection of a trial

start event in the recording is facilitated by using the ReachGraspIO instead of the

BlackrockIO directly as the ReachGraspIO identifies individual trials while loading the

data and labels the trial events in a human readable fashion.

The ReachGraspIO extends and annotates the Neo structure generated by the BlackrockIO

in multiple ways: continuous recording signals are corrected for time shifts introduced

by online filters, event times extracted from analog signals are added and a merged

21where nsX represents the set of extensions ns1, ns2, ns3, ns4, ns5 and ns6

28

2.5. DATA LOADING AND ENRICHMENT WITH METADATA

68 # Open the session for reading
69 session = reachgraspio.ReachGraspIO(session_name, odml_directory=odml_dir)
70
71 # Read the first 300s of data (time series at 1000Hz (ns2) and 30kHz (ns6)
72 # scaled to units of voltage, sorted spike trains, spike waveforms and events)
73 # from electrode 62 of the recording session and return it as a Neo Block. The
74 # time shift of the ns2 signal (LFP) induced by the online filter is
75 # automatically corrected for by a heuristic factor stored in the metadata
76 # (correct_filter_shifts=True).
77 data_block = session.read_block(
78 nsx_to_load='all',
79 n_starts=None, n_stops=300 * pq.s,
80 channels=[62], units='all',
81 load_events=True, load_waveforms=True, scaling='voltage',
82 correct_filter_shifts=True)

86 data_segment = data_block.segments[0]

92 # Here, we construct one offline filtered LFP from each ns5 (monkey L) or ns6
93 # (monkey N) raw recording trace. For monkey N, this filtered LFP can be
94 # compared to the LFPs in the ns2 file (note that monkey L contains only
95 # behavioral signals in the ns2 file). Also, we assign telling names to each
96 # Neo AnalogSignal, which is used for plotting later on in this script.

99 filtered_anasig = []
100 # Loop through all AnalogSignal objects in the loaded data
101 for anasig in data_block.segments[0].analogsignals:
102 if anasig.annotations['nsx'] == 2:
103 # AnalogSignal is LFP from ns2
104 anasig.name = 'LFP (online filter, ns%i)' % anasig.annotations['nsx']
105 elif anasig.annotations['nsx'] in [5, 6]:
106 # AnalogSignal is raw signal from ns5 or ns6
107 anasig.name = 'raw (ns%i)' % anasig.annotations['nsx']
108
109 # Use the Elephant library to filter the analog signal
110 f_anasig = butter(
111 anasig,
112 highpass_freq=None,
113 lowpass_freq=250 * pq.Hz,
114 order=4)
115 f_anasig.name = 'LFP (offline filtered ns%i)' % \
116 anasig.annotations['nsx']
117 filtered_anasig.append(f_anasig)
118 # Attach all offline filtered LFPs to the segment of data
119 data_block.segments[0].analogsignals.extend(filtered_anasig)

123 # Construct analysis epochs
124 #
125 # In this step we extract and cut the data into time segments (termed analysis
126 # epochs) that we wish to analyze. We contrast these analysis epochs to the
127 # behavioral trials that are defined by the experiment as occurrence of a Trial
128 # Start (TS-ON) event in the experiment. Concretely, here our analysis epochs
129 # are constructed as a cutout of 25ms of data around the TS-ON event of all
130 # successful behavioral trials.

143 start_events = get_events(
144 data_segment,
145 properties={
146 'name': 'TrialEvents',
147 'trial_event_labels': 'TS-ON',
148 'performance_in_trial': session.performance_codes['correct_trial']})

159 pre = -10 * pq.ms
160 post = 15 * pq.ms
161 epoch = add_epoch(
162 data_segment,
163 event1=start_event, event2=None,
164 pre=pre, post=post,
165 attach_result=False,
166 name='analysis_epochs')

174 cut_trial_block = Block(name="data_cut_to_analysis_epochs")
175 cut_trial_block.segments = cut_segment_by_epoch(
176 data_segment, epoch, reset_time=True)

Code Listing 2.1: Example code for loading and processing of published data. Meta-
data annotated data is loaded (line 69-86) and a low pass filtered version of the original
signals in generated (line 99-119). Trials are identified and signals are cut into the
corresponding segments (line 123-176). Code extracted from Brochier et al. (2018),
https://gin.g-node.org/doi/multielectrode_grasp/src/master/code/example.py
.

29

CHAPTER 2. SHARING DATA

195 # Create figure
196 fig = plt.figure(facecolor='w')
197 time_unit = pq.CompoundUnit('1./30000*s')
198 amplitude_unit = pq.microvolt
199 nsx_colors = ['b', 'k', 'r']
200
201 # Loop through all analog signals and plot the signal in a color corresponding
202 # to its sampling frequency (i.e., originating from the ns2/ns5 or ns2/ns6).
203 for i, anasig in enumerate(trial_segment.analogsignals):
204 plt.plot(
205 anasig.times.rescale(time_unit),
206 anasig.squeeze().rescale(amplitude_unit),
207 label=anasig.name,
208 color=nsx_colors[i])
209
210 # Loop through all spike trains and plot the spike time, and overlapping the
211 # wave form of the spike used for spike sorting stored separately in the nev
212 # file.
213 for st in trial_segment.spiketrains:
214 color = np.random.rand(3,)
215 for spike_id, spike in enumerate(st):
216 # Plot spike times
217 plt.axvline(
218 spike.rescale(time_unit).magnitude,
219 color=color,
220 label='Unit ID %i' % st.annotations['unit_id'])
221 # Plot waveforms
222 waveform = st.waveforms[spike_id, 0, :]
223 waveform_times = np.arange(len(waveform))*time_unit + spike
224 plt.plot(
225 waveform_times.rescale(time_unit).magnitude,
226 waveform.rescale(amplitude_unit),
227 '--',
228 linewidth=2,
229 color=color,
230 zorder=0)
231
232 # Loop through all events
233 for event in trial_segment.events:
234 if event.name == 'TrialEvents':
235 for ev_id, ev in enumerate(event):
236 plt.axvline(
237 ev,
238 alpha=0.2,
239 linewidth=3,
240 linestyle='dashed',
241 label='event ' + event.annotations[
242 'trial_event_labels'][ev_id])
243
244 # Finishing touches on the plot
245 plt.autoscale(enable=True, axis='x', tight=True)
246 plt.xlabel(time_unit.name)
247 plt.ylabel(amplitude_unit.name)
248 plt.legend(loc=4, fontsize=10)
249
250 # Save plot
251 fname = 'example_plot'
252 for file_format in ['eps', 'png', 'pdf']:
253 fig.savefig(fname + '.%s' % file_format, dpi=400, format=file_format)

Code Listing 2.2: Continuation of Code Listing 2.1. The plotting of the data
belonging to the extracted trials for generation of Fig. 2.5. The figure is initial-
ized and plotting parameters are defined (line 196-199). AnalogSignals are visu-
alized (line 201-208) and Spiketrains are plotted together with the correspond-
ing waveforms (line 213-230). Events are visualized as vertical lines, labelled in
human readable way (line 233-242). Finally, the plot is completed and saved in
three different formats (line 244-153). Code extracted from Brochier et al. (2018),
https://gin.g-node.org/doi/multielectrode_grasp/src/master/code/example.py
.

30

2.5. DATA LOADING AND ENRICHMENT WITH METADATA

Figure 2.5: Example visualization of the published data. The code to generate the
figure is shown in Code Listings 2.1 and 2.2. All recorded data from a single electrode are
visualized: the raw, high resolution continuous recording signal (ns6, black), the online
filtered continuous recording signal (Ns2, blue) as well as an offline filtered version based
on the raw signal (red). In addition spikes times are marked corresponding to their Unit

assignment and online extracted waveforms are plotted (yellow, green and black traces).
Trial events are also visualized (dashed vertical line) and labelled in human readable
way (TS-ON, gray).

representation of events from digital and analog sources is created (Fig. 2.6, red box).

The first two of these extensions depend on metadata being provided from the meta-

data collection in odML format. Additional annotations based on information from the

metadata collection are added to most of the Neo objects (Fig. 2.6, gray box). This in-

cludes basic metadata describing individual recording traces of AnalogSignals, sorting

information of Units, general metadata for Segment and Block objects, as well as infor-

mation from the offline trial rejection. If no odML metadata collection is present, these

extension and annotation steps are skipped. Some of these extension and annotation

steps require also additional information, which is available within the ReachGraspIO

as metadata lookup tables. These contain experiment specific code mappings which are

essential for the interpretation of the data stored in the original Blackrock data files.

This includes the mapping of bit-coded to human readable notation for events required

to define a trial, event codes and equivalence groups, the mode in which the experiment

is running (experimental conditions) as well as the performance codes standing for the

outcome of a trial attempt (Fig. 2.6, green box). These metadata lookup tables are

31

CHAPTER 2. SHARING DATA

used to translate the bit-based encoding of trial events into human readable versions.

If an odML file is available, trial ids are extracted from there and also annotated. This

interpretation of the events is a prerequisite for two further annotation steps: the iden-

tification of the task condition, i.e., the task paradigm used in the recording, which

again uses a ReachGraspIO lookup table, as well as the annotation of rejected trials. If

digital and analog events are present, these will be merged in to a single Event object

to simplify the access to all events of recording session (Fig. 2.6, ’merge digital & analog

events’). Finally the ReachGraspIO returns the modified Block which can be used in

further data analysis and visualization scripts (e.g., see Code Listings 2.1 and 2.2) or in

the generation of a metadata collection (see Fig. 2.4).

The original pipeline was implemented using Python 2 and odML version 1.3. The

published datasets were updated in 2019 to be compatible with Python 3 and odML

version 1.4. Old versions are still accessible via the published DOI22 and the version

control system of GIN23.

2.6 Shortcomings of the odML generation pipeline

The presented data publication demonstrates the complexity of the datasets and the

efforts required for preparation and release of the data. The complexity of the process

is exemplified by the fact that only two of of almost 2000 recording sessions being

performed in total with five monkeys were fully described at the time of publication.

Here we list reasons we identified that complicate the preparation process:

Additional features Describing two datasets in a high degree of detail in a manuscript

requires 23 pages of descriptor to provide all necessary details. Including additional

datasets following the same experimental paradigm would expand the descriptor as ad-

ditional features observed in the data need to be described. Extending the descriptor

to include all peculiarities of all datasets will confuse the reader and therefore make

the dataset less easily reusable. Moreover, even small additions or changes in the data

and metadata processing may result in substantial changes to the pipeline design. An

example for additional features which would require explicit description is an additional

type of artifact, which is not described in Brochier et al. (2018) as these two datasets

do not exhibit unintended gaps during the recording (Fig. 2.7). This type of artifact

was first described in Sprenger (2014) and occurs when individual data packets are lost

during data recording within the recording hardware. The loss of data packets does

not cause an interruption of the recording and is not tracked in the recording file, but

the recording files appear intact. Lost data packets can only be detected afterwards by

comparing raw continuously recorded data with the corresponding threshold crossing

events detected online during recording. After the occurrence of a lost data packet,

these two signal are not aligned, as only the continuous signal is affected by lost data

packages, and not the threshold crossing events.

2210.12751/g-node.f83565, https://gin.g-node.org/doi/multielectrode_grasp
23GIN, https://web.gin.g-node.org/

32

2.6. SHORTCOMINGS OF THE ODML GENERATION PIPELINE

Figure 2.6: Schematic data loading pipeline used in Brochier et al. (2018). The
ReachGraspIO (central box) utilizes the BlackrockIO of Neo to load the original record-
ing data (top right). In a second step it enriches and extends the data structure re-
turned by the BlackrockIO containing uninterpreted row data based on additional
metadata information from two sources: a metadata collection in odML format (blue)
and ReachGraspIO internal lookup tables (green) containing the essential information
required for interpretation of the data from the original data files. The extension of
the Neo structure includes correction of time shifts of the recording signals, addition of
events which were extracted offline from behavioural signals and the merging of mul-
tiple event arrays containing meaningful, human readable events in the trail (’correct
filter shifts’, ’add analog events’ and ’merge digital & analog events’, respectively; red
box). The enrichment of the Neo structure encompasses the addition of numerous
annotations (gray box). If no metadata collection is found, these steps are skipped.
Finally the extended Neo structure is returned and can be used for the generation of
a metadata collection or further processing and analysis steps. This introduces a cir-
cular dependency between the ReachGraspIO and the metadata collection, as the first
one can use the other if present to add trial ids as annotations to the Neo structure,
but also the odML generation depends on the ReachGraspIO as essential metadata is
annotated based on internal lookup tables (see also Fig. 2.4). Relations contributing to
this circular dependency of metadata are marked by red arrows.

33

CHAPTER 2. SHARING DATA

Real Signal

Spike
Extraction
ThresholdSpike 1 Spike 2 Spike 3

Extracted Spikes

Spike at t1 Spike at t2 Spike at t3

Lost Data

Saved Signal

Spike
Extraction
ThresholdSpike 1 Spike 3

Saved Spikes

Spike at t1 Spike at t3

Concatentation

Figure 2.7: Origin of gaps in continuous recording data. Depicted are the recording
signals as they are send by the Neural Signal Processor (NSP) (’Real Signal’, top) and
as they are received by the Central Suite computer (CSC) to be written to disc (’Saved
Signal’, bottom). For a visualization of the hardware components, see Fig. A.2. The
spike times are extracted from the continuous signals by the NSP and the corresponding
time of threshold crossing is attached to each spike. In case of a loss of data during the
transfer to the CSC, the spike times are unaffected, only the corresponding spikes of the
lost data are not present. For the continuous signal however, the loss of data leads to a
concatenation of the remaining samples without considering the original time stamps of
the data samples as these are not attached to the data packets (compare sample point
marked in red). Therefore the continuous signal is shifted with respect to the extracted
spikes starting from the beginning of the gap.

34

2.6. SHORTCOMINGS OF THE ODML GENERATION PIPELINE

For a comprehensive check for gaps during the recording, the odML generation

pipeline would need to be extended in multiple places: Firstly, an additional Section

in the odML structure would be required to capture the potential details generated by

a function scanning the original data files. This would require changes in the odML

templates (Fig. 2.4, left box). Secondly, an additional function for gap detection by

comparing events to continuous signals needs to be integrated in the odML generator.

This requires extension of the odML generation code and would potentially increase the

run time of the code considerably as the comparison for a full dataset can be compute

intense and the odML generation process is not parallelized. Finally, since the coded

detection of gaps can only identify the occurrence of a gap, without reliably character-

izing the exact time point or exact extend of the gap, a manual inspection of the data

with a detected gap is required after the first run of the odML generator. To reliably

document the results of this manual inspection the integration of the results into the

odML file is mandatory. This could be implemented by the manual generation of a

secondary metadata source file, from which the corresponding metadata is extracted

during the odML generation process and included in the metadata collection. How-

ever, the suggested procedure requires the execution of the complete odML generation

pipeline twice, once for running the coded detection of gaps and once for integrating

potential manually generated additional metadata describing the exact gap time and

size. The suggested procedure would therefore more than double the run time of the

complete odML generator for recording sessions with gaps, event though only a small

fraction of the metadata was added.

Manual validation Preparing the data for data publication requires cross checking

of all preprocessing steps (e.g., detection and correction of data packet loss) necessary

for that particular set of data. However, in the present scenario, such cross-checks are

neither automatized if possible, nor proceduralized. Instead they are performed once a

specific dataset is selected for a given analysis, and only specific types of cross-checks

relevant for the analysis are typically performed by the researcher.

Variability across datasets The pipeline for automatic metadata aggregation as

presented here has been tested extensively for the two datasets published and the gen-

erated files have been manually checked. Running the exact same pipeline on different

recording datasets from the same recording has been found to frequently fail, due to

slight variations between recording sessions. An intuitive example for this is the set of

event codes observed within a recording (Table 2.2). Here, the interpretation of the ob-

served events codes is performed by the ReachGraspIO transforming combinations and

sequences of bit-encoded events to human readable labels. Due to complex sequences

of event codes that may arise, the interpretation of the bit codes in this experiment

highly depend on the monkey covering scenarios not encountered for the two published

datasets. Extending this to other monkeys and other recording sessions required i) ex-

tending the interpreting routine making the code more convolved and less readable and

ii) extensive manual validations to ensure the correct interpretation of the bit encoded

35

CHAPTER 2. SHARING DATA

events.

Availability of source files and pipeline complexity The preparation of source

files for the metadata aggregation into a single odML file is laborious and requires thor-

ough cross checking. Typically, there is no dedicated person responsible for this, but

the task is shared between people involved in the experiments. This results in a diffu-

sion of responsibility, as all scientists also have individual projects to care about often

focused on a specific subset of the data. For the discussed experiment, not all source

files are available for all recording sessions, therefore the generation of an odML file will

not succeed for part of the recording sessions. This mainly affects sessions that are cur-

rently not used for analysis due to other quality exclusion criteria. Most importantly,

the complexity of the odML generation leads to a situation where most scientists are

not able to properly assist in the curation process.

In addition to the factors complicating the publication of a high volume of additional

datasets from the same experiment as above, there are additional challenges to be taken

into account when implementing a metadata aggregation pipeline of the complexity as

presented here:

Multiple contributors In the case of multiple people involved in the curation process

this also requires coordinated activity among all of them. Having individual copies of

source files and running the metadata aggregation pipeline using different configurations

will lead to various, potentially inconsistent metadata collections. Also the updates of

metadata need to be tracked and communicated in a reproducible manner.

Robustness & Usability Special attention also needs to be invested making the

execution of the pipeline (or minimally: the result of the execution) available to all

collaborators, taking into account different needs and software (version) requirements

of scientific projects. The pipeline therefore has to be robust to be run on different

machines and different system environments and results need to be compatible with

all analysis setups in use. For example for the published datasets accessing the data

requires consistent ReachGraspIO and Neo versions.

Structure & Reusability The presented metadata pipeline separates the generation

of the structural templates of the odML and their enrichment with metadata values. This

separation is a good approach during the design of the metadata pipeline, as a general

structure first needs to be established before implementing the enrichment. During the

production phase of the odML generation, however, this separation results in a coupling

between the two phases, as for the enrichment of the odML structure knowledge about

the structure is required. During the runtime of an experimental series frequently also

structural adjustments and extensions to the odML tree need to be performed as the

experimental design was updated or the need to track additional metadata was recog-

nised. The modification and extension of the metadata structure during the production

36

2.7. REQUIREMENTS FOR MAINTAINABLE AND REPRODUCIBLE METADATA

MANAGEMENT

phase always requires changes on both ends of the odML generation process (structure

building & enrichment), leading to an overly complex procedure to adjust the pipeline

which is hard to maintain. Due to the separation of the structural templates and their

enrichment with metadata only the template odML files are easy to extract from the

presented pipeline for application in a different experiment. The enrichment of the

structure is built-in the odML generation pipeline and can not be easily transferred to

another metadata pipeline as this is code is specific to the metadata source files.

Linearity The presented pipeline for generating a metadata collection relies on the

usage of the ReachGraspIO (Section 2.5) for a basic interpretation of recorded events

using the internal metadata lookup tables. Hard coding metadata processing in this

manner is a reasonable approach to make the data quickly usable while the experiment

is still under development, but in a stable configuration this introduces cyclic depen-

dencies. In the example presented, the ReachGraspIO relies on an (optional) odML file

to provide metadata on the one side and on the other side the odML generation process

depends on the usage of the ReachGraspIO (see Figs. 2.4 and 2.6). This introduces

additional dependencies between software versions and metadata and convolutes the

data loading from metadata interpretation and annotation aspect.

Portability The presented metadata pipeline relies on specific versions of software

packages, whereas typically in an experimental environment the exact versions used are

not necessarily well documented in a rigorous fashion. Therefore executing the pipeline

on a different system,e.g., a high performance cluster, requires expert knowledge and

additional effort to satisfy all version dependencies of the pipeline with respect to other

software packages.

Consistency Working with the published data requires multiple compatible files to be

present: the original data files, the metadata collection, and multiple software packages

including multiple custom codes, in particular the ReachGraspIO and Neo in combina-

tion with odML. In other words, a researcher must use the same versions of all of these

components as was used during the odML generation process. The version compatibil-

ity between all three aspects is typically only neglectfully documented and needlessly

complicates the setup of a system to work with the data. Moreover, it locks the users

into versions of libraries that may become outdated over time.

2.7 Requirements for maintainable and reproducible meta-

data management

Based on the experience from publishing the two datasets (Section 2.6) we identify es-

sential requirements for maintainable and reproducible metadata management pipelines

in complex, collaborative projects.

37

CHAPTER 2. SHARING DATA

R1: Common terminologies To have a foundation for communication between col-

laboration partners it is important to agree on common terminologies. Within a

scientific discipline, this might be given to a sufficient degree from mutual under-

standing, but as soon as scientists from multiple backgrounds need to interact,

agreeing on common terms is an essential first step. Formalizing this in a docu-

mented way in the metadata collection is part of this process and documents the

terminology also for future generations of scientists but also within the run-time

of a single project.

R2: Structured machine & human readable metadata The metadata collection

needs to be programmatically accessible to be used for data annotation and query-

ing. However, metadata also needs to be human readable, for manual checks and

scanning of metadata. This becomes of special importance in the context of labo-

ratory notebooks and how automatically generated metadata collections can sub-

stitute the manual notebooks in the long term. Finally, if metadata are machine

accessible this information can automatically be used during data processing and

analysis (e.g., for labelling in data visualization). However, this approach only

makes sense if the data is additionally human readable, as in the in the long run

scientists inspect the processing and analysis results.

R3: Central data and metadata location As discussed in Section 2.6, in a collab-

orative environment a systematic organization of metadata is essential. Providing

access to data and metadata via a central data storage is a straight forward solu-

tion.

R4: Version control To be able to communicate efficiently about data and metadata,

version control can assist in collaborative curation, but also in making changes

and addition to metadata visible. Using version control the usage of identical data

and metadata versions by different scientists can be guaranteed as well as changes

in the data and metadata collection can be tracked easily. This permits to track

updates and changes on the data and metadata side and document these.

R5: Mostly automatic metadata compilation With the large amount of meta-

data accumulating it is a high priority to automate metadata aggregation as far

as possible. In some cases this is not possible in all cases, e.g., when metadata

are only available in hand-written form in laboratory notebooks. This type of

metadata, however, is a very small fraction of metadata and has to be digitized

manually in most cases.

R6: Extendable metadata workflow As discussed in Section 2.6 scientific meta-

data workflows need to be easily extendable to cope with latest analysis require-

ments and scientific findings.

R7: Reusability Scientific workflows should be (partially) reusable for related projects

to simplify the setup of similar workflows and save time in implementing these.

38

2.7. REQUIREMENTS FOR MAINTAINABLE AND REPRODUCIBLE METADATA

MANAGEMENT

R8: Standardized & reproducible preprocessing Standardizing preprocessing steps

improves clarity and rigour of the preprocessing tools and contributes to the as-

pect of Reusability (R7) of the workflow. Making the individual preprocessing

steps reproducible, e.g., by tracking used packages (provenance tracking) and

documenting the code version helps making the whole workflow reproducible.

R9: Easy to access data and metadata for non-experts Data and metadata should

be easy to use by non-experts of the preprocessing pipeline. In the ideal case an

out-of-the-box solution can be presented to the user, who can load the data im-

mediately without installing a series of software dependencies.

R10: Consistent data and metadata Data and metadata should always be consis-

tent. This includes the guarantee that,e.g., preprocessing steps performed on the

data should also be reflected in the metadata collection. The concept of version

control and reproducibility aid the consistency assurance.

R11: Open source tools In as much as possible, the workflow should use open source

software tools that provide their source code to the community. This has the

advantage of validation of the correct functionality by other users and permits to

fix potential errors. For community software projects also code corrections and

enhancements can be suggested and will usually be reviewed and integrated into

the tool. Open source tools are free of charge and therefore provide a suitable

basis for scientific work to be independent of industry.

2.7.1 Evaluation of presented metadata pipeline

The pipeline used for metadata aggregation and access in Brochier et al. (2018) is de-

scribed in Section 2.3. In Section 2.7 we identify eleven requirements for maintainable

and reproducible metadata management. In the following we evaluate the presented

pipeline with respect to these requirements. Table 2.3 summarizes the findings.

The presented metadata pipeline consists of two main components: the odMLGenerator

for integrating the metadata in a single odML metadata collection and the ReachGraspIO

for data access and integration with metadata. By utilizing odML for metadata storage

the requirement of having common terminologies (R1) is fulfilled on a project level in

this pipeline, since odML requires the specification and definition of terms within the

collection which is then shared between collaborators. This approach also guarantees

that the metadata collection is machine and human readable (R2), as the odML file is

xml based and provides tools for user friendly visualization (odMLtables (Chapter 3),

odML-UI24, odml_view25).

The pipeline itself does not include the automatic storage of data or metadata or

related scripts at a central location (R3). However, combining the pipeline manually

with a central server or a common data hosting platforms is straightforward as data

24https://pypi.org/project/odML-UI/
25https://github.com/G-Node/python-odml/blob/master/odml/scripts/odml_view.py

39

CHAPTER 2. SHARING DATA

Requirement Brochier et al., 2018
R1: Common terminologies in project
R2: Structured machine & human readable metadata yes
R3: Central data and metadata location no
R4: Version control no
R5: Mostly automatic metadata compilation manual initialization
R6: Extendable metadata workflow minimal
R7: Reusability partial
R8: Standardized & reproducible preprocessing no
R9: Easy to access data and metadata for non-experts partial
R10: Consistent data and metadata partial
R11: Open source tools mostly

Table 2.3: Overview of workflow features for Brochier et al. (2018) based on require-
ments for data and metadata workflows as defined in Section 2.6. The presented pipeline
fulfills basic criteria regarding common terminology definition and structured and read-
able metadata and the usage of open source tools. Other criteria are partially or not
met.

as well as metadata files are self contained. By using a central data hosting platform

which supports version control, like GitHub26, GitLab27 or GIN28, version control can

be automatically introduced at the same time (R4). Alternative to using version control

in combination with a remote server, a version control system can also be implemented

locally, e.g. by using git29, git-annex30 or git-lfs31 to version data locally.

The presented metadata pipeline is automated in the sense that it does not require

direct manual interaction (R5). However, a fully automated workflow would include

automatic initiation of the pipeline upon a change in the source files. This is not the

case here, as there is no trigger mechanism included. Instead, the pipeline is triggered

by the user and can be performed selectively on a subset of available files. The latter is

bound to lead to a situation where the metadata collection of the complete experiment

becomes inconsistent. Possible extensions including this would be the integration of

centrally hosted code in combination with a web hook to a continuous integration service

like Jenkins32, Travis33 or CircleCI34. In this way adding or modifying metadata sources

or the code to generate odML files in a repository would automatically trigger the odML

generation process.

The extendability (R6) of the presented pipeline is limited, as changes in the meta-

data always require code changes in multiple locations (see Section 2.6, ’Additional

features’, ’Variability across datasets’, ’Structure & Reusability’) and dependencies be-

tween structure and metadata need to be explicitly implemented in the odML generation

26https://github.com/
27https://about.gitlab.com/
28https://gin.g-node.org/
29https://git-scm.com/
30https://git-annex.branchable.com/
31https://git-lfs.github.com/
32https://jenkins.io/
33https://travis-ci.org/
34https://circleci.com/

40

2.7. REQUIREMENTS FOR MAINTAINABLE AND REPRODUCIBLE METADATA

MANAGEMENT

process. This requires expertise knowledge about experiment, its metadata and the

metadata pipeline and leads to convoluted code due to the monolithic design of the

pipeline.

The separation between building the structure of the odML document and the

enrichment with metadata makes parts of the structural templates usable for other

experiments if they contain similar hardware, software or preprocessing components.

However, the code for enriching these template structures is highly specific to the non-

standardized formats of the metadata source files in this experiments. Therefore the

reusability of the presented workflows for other experiments is limited to parts of the

structural template of the odML document and a few generic routines (R7).

The compilation of the odML document in the presented pipeline is a single Python

script that relies on a number of additional Python modules for the aggregation process.

No provenance is captured in the process and the final odML file does not contain any

information about its generation process (R8). In particular, this means that for the

odML file it is impossible to match the version of the ReachGraspIO or the odMLGen-

erator and the content can not be verified. Possible extension to the pipeline could be

the usage of a provenance tracking tool like Sumatra35 or explicit tracking of file and

package versions used in the pipeline.

For accessing the data in combination with the collected metadata in the odML

format multiple software requirements need to be installed in specific versions: Neo

for providing the data structure, odML for metadata handling, the experiment specific

ReachGraspIO for combining the two as well as the original data files with a specific

version of the odML file. All of these have version interdependencies, which need to

be considered when setting up an analysis based on the published data. In particular,

version requirements of the analysis process may conflict with that of the code to access

the original data files, e.g. by requiring different Neo versions. Therefore installation of

an analysis pipeline based on the published dataset requires some effort and time and can

be demanding for non-experts (R9). Also, this may lead to analysis relying on outdated

package versions and not benefiting from bug fixes and upgrades, as dependencies are

restricted by the packages required for initial loading of the data.

In the presented workflow the consistency of data and metadata is not explicitly

checked. Especially after the odML file generation, there is no mechanism to validate

the metadata and data (R10). An indirect mechanism to ensure consistency of data

and metadata files is to introduce provenance tracking (8) in combination with version

control mechanisms (R4).

By using Python for the presented metadata pipeline in combination with the open-

source software packages odML, odMLtables and Neo Brochier et al. (2018) rely strongly

on open-source software (R11). Some exceptions are preprocessing steps, which are re-

quired to generate the metadata source files, e.g., spike sorting using Plexon and a

custom event detection implemented in Matlab. Also the recording setup is based on

Windows and closed-source recording software by Blackrock Microsystems, but in princi-

35https://pythonhosted.org/Sumatra/

41

CHAPTER 2. SHARING DATA

ple alternative open-source projects for electrophysiology recordings (e.g., open ephys36)

and spike sorting (e.g., tridesclous37) exist, but need to be evaluated in the context of

this and future projects.

In summary, the presented pipeline constructs a metadata collection, which adheres

partially to the FAIR principles, as it uses the standardized odML format and open

source tools for metadata aggregation. However, the process of metadata aggregation

presented here is complex and tedious, making the implementation of the FAIR princi-

ples labour-intensive. Additionally, the recording data are stored in proprietary formats

which inherently only contain minimal metadata and lack interoperability. In the fol-

lowing we will present two projects for facilitated metadata acquisition (Chapter 3) and

standardized data representation (Chapter 4).

36http://www.open-ephys.org/
37https://github.com/tridesclous/tridesclous

42

Chapter 3

Metadata management

- The basis for reproducible science

3.1 Introduction to odMLtables

In recent years, the workflows involved in conducting and analyzing neurophysiologi-

cal experiments have become increasingly complex (e.g. Coles, Carr, and Frey, 2008;

Denker and Grün, 2016; Brochier et al., 2018). Several factors contribute to this de-

velopment. Nowadays, a recording setup is usually comprised of several hardware and

software components that are often produced by different companies, or might even be

custom made. In addition, due to the technological progress in neuroscience during

the last decades the task designs have become more and more sophisticated, as can be

observed, for example, when considering experiments mimicking realistic, natural con-

ditions. Neuronal or muscular signals (e.g., eye and arm movements) can be gathered in

parallel from multiple optical or electrical recording sites (Nicolelis and Ribeiro, 2002;

Verkhratsky, Krishtal, and Petersen, 2006; Obien et al., 2014) together with complex

behavioral measures (Jacob et al., 2010; Maldonado et al., 2008; Vargas-Irwin et al.,

2010; Schwarz et al., 2014). Moreover, these signals can be experimentally manipu-

lated in intricate ways, e.g., via multidimensional natural stimuli (Geisler, 2008) or

sophisticated optical or electrical stimulation methods (Deisseroth and Schnitzer, 2013;

Miyamoto and Murayama, 2015). As a result, the amount of information required to

fully describe all circumstances under which the experiment was conducted and data

was recorded, here collectively referred to as ’metadata’, has grown considerably at the

same time. Therefore, metadata of neuroscientific studies are increasingly difficult to

document and the implementation of specific software solutions to facilitate their man-

agement in daily routines involves a lot of time and effort (Zehl et al., 2016). Here the

application of the FAIR principles can ameliorate the situation by providing guidelines

for systematic and structured metadata handling and documentation. In the following

we identify key points for the efficient and sustainable metadata documentation in the

context of experiments and provide tools for addressing these issues.

The complexity of collecting metadata originates from two factors: Firstly, the grow-

ing heterogeneity of setup equipment alone makes it difficult to fully track the exact

43

CHAPTER 3. METADATA MANAGEMENT

circumstances under which the primary data were recorded and how the recorded sig-

nals were processed along an experimental recording session ("black box" effect, i.e., the

difficulty to precisely relate inputs and outputs to the equipment). Secondly, the com-

plexity of the signal types and manipulations using various tools within custom signal

processing pipelines increases the effort needed for comprehensive metadata tracking

across all parts of the recording system and all processing steps. In particular, the

hardware components and software tools employed in these experimental setups typ-

ically do not provide a complete account of their metadata and store their output in

non-standardized representations that impede gaining insights into the details of the

recording process. Nonetheless, collecting and providing metadata of an experiment is

a necessary step towards replicable experiments and therefore forms the basis for repro-

ducible research (Tebaykin et al., 2017). In this regard, metadata have to be human

readable in order to give users semantic access to the data, similar to a traditional

lab book. However, only standardized, machine-readable metadata can be systemat-

ically reproduced during automatized analysis processes, which makes them a crucial

ingredient for tracking the data provenance leading to a research publication.

A software approach to manage neuroscientific metadata is the open metadata Markup

Language (odML) framework (Grewe, Wachtler, and Benda, 2011). It has been actively

developed and extended during the last years to version 1.4, which is considered in the

following. The implementation of the odML format is based on the generic eXtensible

Markup Language (XML) and provides an application programming interface (API) for

Python and Matlab. It is designed to organize metadata of arbitrary type into a stan-

dardized, hierarchically structured format that is both human and machine-readable.

With this, it is possible to organize metadata originating from heterogeneous sources

in a unified way and record them in an interoperable format. Providing metadata in

such a standardized format along with the data files of an experiment facilitates the

collaboration process between members of a scientific project, because metadata can be

organized and made available to all members in a unified way, thus supporting rigour

and reproducibility of data analysis through standardized and formalized access to the

available metadata (Zehl et al., 2016).

Fig. 3.1 shows a generic representation of an example workflow that results in the

generation of a metadata collection represented in odML. The starting point are col-

lections of files containing various subsets of the metadata for individual recordings of

an experiment (e.g., different recording days). The data in these files are often orga-

nized in different formats within a collection, and files and metadata between different

collections may differ due to factors such as changes in the experiment. Therefore, it

is possible and advisable to construct template structures for the metadata collection

to enforce a systematic metadata structuring. However, in practical scenarios often

custom scripts are required to populate these templates, e.g., to cover small variations

between metadata collections when a certain piece of information is not present for a

particular recording. In addition, the metadata collection must be manually enriched by

information that is not digitally available in the first place. The outcome of this build

44

3.1. INTRODUCTION TO ODMLTABLES

process are odML files for each recording, adhering to a uniform template structure. In

a final step, these individual metadata collections may be merged into a single odML file

in order to provide scientists with the ability to perform full metadata queries on the

complete experiment. Zehl et al. (2016) provides a complete account of this workflow

including practical examples.

odML template
scripted

enrichment
manual

enrichment

complete

metadata

collections

integration

e.g. recording day 2

metadata collection B

e.g. recording day 1

metadata collection A

e.g. recording day 3

metadata collection C

complete odML

collection

Figure 3.1: Generic workflow of generating metadata collections from source
files using the odML framework. For a given metadata collection (top row, example
metadata collections A-C), metadata are pooled from multiple files and enriched via
manual entry (second row). These metadata are converted into individual collections
via a scripted approach applying an odML template structure (third row). By further
integrating individual multiple metadata collections (fourth row), a complete odML

collection containing all recordings of a particular experiment can be created (bottom
row).

Implementing and applying such a rigorous workflow as described in Fig. 3.1 requires

programming skills by the scientist. However, metadata handling is often performed by

several experimenters with varying computational expertise. Furthermore, extensive

manual editing of the metadata files via the present graphical user interface (GUI) in-

cluded in the odML framework tends to be cumbersome for large metadata trees due to

their hierarchical, complex organization. While visualization of the hierarchical organi-

zation is suited for an overview of the general structure and relation of the metadata,

finding or comparing particular values can be difficult if they are distributed in differ-

ent branches of the hierarchy. Furthermore, editing of distributed entries is laborious,

45

CHAPTER 3. METADATA MANAGEMENT

because a hierarchical organization also requires navigation through the tree to access

a particular entry. This makes this metadata management tool inefficient to use in an

experimental laboratory where often (i) single particular entries need to be modified

manually as the experiment progresses, (ii) a batch of similar entries need to be modi-

fied coherently as the data processing progresses. The combinations of all these factors

results in many experimental laboratories frequently collecting metadata in flat tabular

formats independent of an explicit, underlying hierarchical structure, using tools for

generation and manipulation of tables that do not require programming expertise, are

widely adopted, readily available and familiar to the experimenters.

Thus, for these purposes a flat tabular representation of the metadata appears to be

suitable. It has the advantage of providing easier access to, and simpler visualization

of, the metadata than a hierarchical format. Tabular representations of hierarchical

structures are implemented in a number of generic software tools for xml representation1.

However, these generic xml editors do not provide support for using xml to handle

scientific metadata in a concise way.

We developed odMLtables as a Python package to complement the odML framework

in simplifying working with, and in particular manually editing, the metadata stored

in the hierarchical odML format. odMLtables facilitates the integration of the odML

framework into the experimental workflow by converting between hierarchical odML

and tabular representations in xls or csv format. These tabular formats are easily

accessible via commonly known spreadsheet tools (e.g., Microsoft Excel, LibreOffice

Calc) that enable neuroscientists to manually extend or edit the content of an odML

metadata file. More importantly, the odMLtables package comprises a GUI that guides

the user through all functional features of the tool. With this, it also opens access

to the odML framework for scientists with little or no programming experience. All

main functionality to interact with metadata files is directly accessible from the odML

GUI since version 1.4.0. The software has benefited from the experiences gained in

applying it in collaborative projects involving three different experiments collecting

electrophysiological data: (i) cortical activity in macaque performing a visually-guided

motor task (e.g., Denker, Zehl, et al., 2018; Brochier et al., 2018), (ii) cortical and

hippocampal activity in a developmental study in mice (e.g., Bitzenhofer et al., 2017),

and (iii) cortical activity in a category learning task in gerbils (e.g., Ohl, Scheich, and

Freeman, 2001).

The embedding of odMLtables in a real world metadata management workflow is

described in Zehl et al., 2016, resulting in a published dataset with detailed metadata

descriptions in the odML format (Brochier et al., 2018). In both papers the focus resided

on the concepts of metadata management and the detailed experiment description,

whereas here we complement these studies by a technical tool to implement metadata

capture. While the described experiment (an instructed, delayed reach to grasp task

with multielectrode recordings from monkey motor cortex) is too complex to present

the features and usage of odMLtables, the concepts presented here are abstracted from

1See, e.g., https://www.oxygenxml.com/xml_editor/xml_grid_editor.html or http://rustemsoft.
com/xfox.aspx

46

3.2. SOFTWARE DESCRIPTION

these studies.

To optimally demonstrate the application of odMLtables we present seven minimalis-

tic scenarios of practical metadata management using odML and odMLtables. Together

these scenarios form a complete metadata workflow based on an exemplary multi-day

experiment as commonly encountered in neurophysiology (cf. Fig. 3.1), but also other

fields of science where data is aggregated in repetitive acquisition cycles (e.g., multiple

days of measurements). Moreover, the scenarios are of sufficiently generic nature to

transfer them to other situations where metadata information is collected. The first

two scenarios demonstrate the first steps for setting up a new metadata workflow and

daily metadata collection. Four scenarios deal with the ongoing metadata validation,

enrichment and visualization. The last scenario introduces automation of metadata

collection and management using odML and odMLtables.

In general, odMLtables facilitates access to sophisticated metadata management soft-

ware odML for non-programmers and with that optimizes routine manual metadata ac-

quisitions in any laboratory workflow. In addition, odMLtables can be used to create

visually enhanced tabular overviews of complete or filtered metadata from any hierar-

chically structured odML files. For a scripted metadata approach a Python interface

permits also programmers to benefit from odMLtables features.

3.2 Software description

odMLtables is a Python package that provides a set of functions for working with meta-

data descriptions in the odML metadata framework, with a particular focus on making

these metadata easily accessible for users (Table 3.1). The key approach is to bring the

typically complex, hierarchical structure of the odML format into a tabular and reduced

representation, such that metadata can be more easily inspected or edited. Therefore,

at its core, odMLtables provides functions to convert between the odML format and the

corresponding tabular representation which can be represented in the Microsoft Excel

(xls) or the generic comma separated value (csv) format (Fig. 3.2). Metadata converted

to these tabular formats are accessible via widely used spreadsheet software (e.g., Mi-

crosoft Excel2 or LibreOffice Calc3), such that users are able to intuitively view and edit

the metadata. After editing, the metadata can be brought back to the standardized,

hierarchical form defined by the odML framework (as illustrated in Fig. 3.2).

Next to the functionality of converting between odML and the tabular formats,

odMLtables provides four additional capabilities that address common tasks when work-

ing with metadata collections:

2https://products.office.com/en-us/excel
3https://www.libreoffice.org/discover/calc/

47

CHAPTER 3. METADATA MANAGEMENT

Code version 1.0.0b3
Permanent link to code/repository https://github.com/INM-6/python-odmltables
Documentation https://odmltables.readthedocs.io
Support https://github.com/INM-6/python-odmltables/issues
Programming Language Python
Dependencies odML, PyQt5
Research Resource Identifier (RRID) SCR_016228
Legal Code License BSD 3-Clause

Logo

Table 3.1: Overview of odMLtables characteristics of the version considered here.

odML file

xls/csv file

edit

Figure 3.2: Minimal workflow for manually editing odML files via odMLta-
bles. Metadata is manually edited in tabular form using spreadsheet software and
stored in xls and csv formats (left). The minimal functionality of odMLtables is to con-
vert between such tabular representations and the hierarchical odML structure (right).
The hierarchical placement of individual metadata entries, i.e., the Sections of the odML

tree, is encoded in a specific column of the table (gray boxes and circles), whereas the
values and attributes of metadata entries, i.e., a Property represented as leaves of the
odML tree, are stored in rows of the table (colored boxes).

48

3.2. SOFTWARE DESCRIPTION

• filtering (or reduction) of a metadata collection to a subset

• merging of two metadata collections

• generation of a basic odML structure to facilitate the design of a new metadata

collection

• creating a tabular overview across multiple metadata entries within a metadata

collection

The functionality of the odMLtables can be accessed in one of two ways. First, the

API of the odMLtables complements the original Python odML API (Grewe, Wachtler,

and Benda, 2011). As such, odMLtables simplifies the scripting of automated metadata

extraction and aggregation tasks in an experiment. Second, odMLtables includes a GUI

that enables non-programmers access to the large majority of functionality offered by

the library. In this way, odMLtables can aid work with odML-based metadata collections

in metadata workflows that do not include scripted processing stages.

In the following, we describe in detail the structure of the hierarchical and tabular

metadata representations, the main capabilities of odMLtables illustrated by means of

the GUI, and its internal architecture.

3.2.1 Tabular representation of the odML format

odMLtables converts the hierarchical odML structure (Fig. 3.3A) into a specific tabular

(flat) representation (Fig. 3.3B), stored either in the xls or csv format. In this format,

each row corresponds to one particular value entry. The columns further describe the

Property and Section each value belongs to, e.g. the Property name, the Section and

Subsections the Property belongs to, the physical units, or the Property definition. The

hierarchy of Sections in which a Property is located in the original odML structure is

represented by a path construct, where individual Section names are delineated by the

’/’ character. For increased readability, repetitive information (i.e. identical information

to the cell above) is optionally displayed only at the first instance (e.g., ’Path to Subject’

entry (’/Subject’) in row 3, 4 and 5 in Fig. 3.3B). By default, the column headers are

predefined (Fig. 3.3B, first row), however, the header names can also be customized

as long as a mapping between the predefined names and the custom names can be

provided. The order of the columns of the table can be customized since the column

header names are used to associate columns with attributes of the hierarchical odML

structure. The odML Document attributes ’author’, ’date’, ’version’ and ’repository’ are

handled separately and are placed in the top row of the tabular odML representation.

3.2.2 Software functionalities

odMLtables is a tool that provides 5 functionalities surrounding work in creating and

accessing metadata collections. In the following, we describe the capabilities of these

features, while their use is put into the context of a typical workflow in Section 3.3.

49

CHAPTER 3. METADATA MANAGEMENT

Document

Author: The odMLtables Team

Subject

Definition: Information on ...

Species

Definition: Binomial name of ...
Values: Mus musculus

Datatype: string

Birthdate

Definition: Birthdate of ...
Values: 1999-12-24, 12am

Datatype: datetime

Scores 2000-01-01

Definition: Score values for ...

Experimenter

Definition: Person who ...
Values: [Alice, Bob]

Datatype: person

Weight

Definition: Body weight of ...

Values: 5

Datatype: float
Unit: g
Uncertainty: 0.5

Date

Definition: Day of the ...

Values: 2000-01-01

Datatype: date

Comment

Definition: Comment about ...
Values:

Datatype: string

uID

Definition: Unique ID of ...

Values: asdf1234ghjk56789

Datatype: string

Alias

Definition: Custom ID of ...
Values:

Datatype: string

A

B
Document Information author The odMLtables Team date repository version

Path to Section Property Name Value Data Uncertainty Data Unit odML Data Type Property Definition Section Definition

/Subject Species Mus musculus string Binomial name of ... Information on the investigated subject

Birthdate 1999-12-24, 12am datetime Birthdate of the ...

uID asdf1234ghjk56789 string Unique ID of ...

Alias string Custom ID of the ...

/Subject/Scores 2000-01-01 Experimenter Alice person Person who perf... Score values for health status estimation

Bob

Weight 5 0.5 g float Body weight of the ...

Date 2000-01-01 date Day of the ...

Comment string Comment about ...

Figure 3.3: Mapping of an odML structure in (A) hierarchical metadata
format to (B) tabular format. Individual attributes of the odML entities are rep-
resented in different columns in the tabular representation (e.g. ’Section Definition’,
’Property Name’, ’Data Uncertainty’, compare color code). Document attributes (’au-
thor’, ’date’, ’repository’ and ’version’) are described separately in the first row of the
tabular representation. The hierarchy of Sections is captured in an additional column
(’Path to Section’) describing the path between the odML Document and the current
Section. Each metadata entry in the hierarchical format corresponds to a single row in
the tabular format. Items of a list are treated as individual entries.

All main features of odMLtables are available via the odMLtables GUI (Fig. 3.4).

Upon launching the application, it presents the user with 5 buttons, each leading to

a series of dialogues (wizards) to perform a specific odMLtables functionality. For the

more complex dialogues that include a large number of parameters to set, the GUI offers

to save and load the dialog configuration to efficiently re-run a functionality with given

parameters.

In addition to the functionality offered by the GUI, the Python programming inter-

face of odMLtables offers additional features, most notably, the ability to customize the

default values for odML data types. The default values can be displayed using a high-

lighted coloring scheme to indicate to the researcher that a Property currently contains

a default value (for details, see the odMLtables documentation4).

The main features of odMLtables are described in detail below and are referred to

as feature F1- F5:

F1: Convert between odML and table format. This function converts meta-

data collections between the representations in the different file formats odml, xls, and

4https://odmltables.readthedocs.io

50

3.2. SOFTWARE DESCRIPTION

Figure 3.4: Main window of the odMLtables GUI. The interface gives access
to the main functionalities available by the tool: Converting files from hierarchical
to tabular (flat) representations, generating an empty generic odML table (template),
comparing entries within a metadata collection, merging contents of two collections,
and selecting a subset of a metadata collection (filtering). Each button starts a series
of dialogues (wizards) that guide the user through the corresponding process.

csv. For the conversion to and from the tabular formats (xls/csv) a specific formatting

of the table is required in order to interpret the table as hierarchical odML structure

(see Section 3.2.1). Nevertheless, odMLtables allows for a certain degree of flexibility in

order to give researchers the ability to design tabular formats to best fit their workflow.

In particular, this encompasses the inclusion or removal of certain optional columns,

the arrangement of columns, column headers, or the coloring scheme. Note however,

that for the reverse conversion from a tabular format back to the odML format, these

customizations need to be known (e.g. custom column names, see Section 3.3).

F2: Generate new metadata collection table. This function generates and

saves an empty, generic (template) odML structure in the xls format. This generic

structure provides a good starting point to design a metadata collection or template

structure in a tabular format providing the required tabular structure for conversion to

a hierarchical odML structure. Similar formatting options can be applied to the table

as indicated above.

F3: Generate overview across entries within a metadata collection This

function creates a chart listing multiple entries within a single metadata collection. It is

51

CHAPTER 3. METADATA MANAGEMENT

intended to develop overview sheets containing similar Properties, e.g. the animal weight

at different ages. The generated table does not follow the tabular odML format and can

therefore only be used for visualization and not for conversion into the hierarchical

odML format. Using common spreadsheet software the comparison table can be saved

as a figure and printed for usage in a laboratory notebook.

F4: Merge contents of two metadata collections This function allows to merge

multiple files (odML format) into a single file. Here, by default, Sections, Properties and

values are added to existing entities during merging. However, for values of coinciding

Properties the option exists to overwrite values during the process of merging.

F5: Filter content of a metadata collection This function reduces the size of

an odML file based on a filter mechanism, which can include multiple steps of filtering

and custom filter functions to select only specific parts of an odML structure. The

filter mechanism e.g. can extract all Properties containing no values to present the

experimenter potential missing entries in the metadata collection.

3.2.3 Software architecture

In the following, we explain the internal structure of the odMLtables software. For a

detailed description, see the function reference in the odMLtables documentation.

The core of odMLtables is the OdmlTable class, which provides the main functionality

for loading and saving metadata collections in the different file formats. It implements

basic operations on the loaded metadata independent of the file format they originate

from. Within the class, metadata are internally represented as a list of dictionaries,

where each dictionary corresponds to an odML Property. Functions that modify the

metadata collection, like merging and filtering, act directly on this internal dictionary

representation. The two tabular formats xls and csv require additional information

regarding the table layout when being saved to disk, e.g., the color scheme. Therefore,

two subclasses of the OdmlTable class (OdmlXlsTable and OdmlCsvTable) carry these

additional output settings. Finally, a separate CompareSectionTable class implements

the function for comparing Properties within one odML structure. As for the OdmlTable

class, two specific subclasses for xls and csv output are defined to capture layout

information (CompareSectionXlsTable and CompareSectionCsvTable).

One feature of odMLtables in generating xls files is to highlight a value entry if it

corresponds to the default value of the corresponding Property’s data type. However,

the odML library itself does not specify such default values for all of its data types.

Moreover, it is not mandatory, nor always desired, to specify a data type in the odML

in all circumstances, e.g., when leaving a value empty. Therefore, odMLtables provides

functionality to work with default values for data types in the OdmlDtypes class. It man-

ages the data types, synonyms, default values, and value conversions. The class is used

for entering default entries when loading empty values from a tabular representation,

and for default value highlighting.

In addition to the core module, odMLtables provides a GUI that exposes most func-

52

3.3. EMBEDDING ODMLTABLES IN DATA ACQUISITION AND ANALYSIS

tionality of the core module. The GUI is based on the PyQt55 framework and consists of

a main window (Fig. 3.4) and five wizards (see Section 3.2.2). Each wizard inherits from

the OdmltablesWizard class, which provides helper functions and error handling. The

Settings class stores the current user settings for calls of odMLtables core functions,

and provides functionality to save and restore user settings between different executions

of the GUI.

3.3 Embedding odMLtables in data acquisition and analysis

While most scientists would agree that accurate records of the minute details of an

experiment are the foundation of good scientific practice, in the everyday routine of an

experimental electrophysiology lab it is difficult for the scientist to record, sort, and

maintain the wealth of metadata information that accumulates during an experiment.

While the odML format is suitable for storing metadata information from different

sources, lacking to date is a set of tools that allows the scientist to create, manipulate

and visualize the data stored in this format. In the following, we present commonly en-

countered scenarios involving metadata handling that originate from our collaborative

work. These scenarios touch the issues of how to design the hierarchical structure to

store and organize the metadata, how to practically enter metadata before, during or

after the experiment, and how to create a comparison of rich metadata buried within

the odML structure. It turns out that for each of these scenarios a flattened tabular rep-

resentation of the metadata is a practical solution that feels intuitive to the user. In the

following we demonstrate how to implement these scenarios that consist of combining

operations in odMLtables and a spreadsheet program. All scenarios are also available

as an interactive Jupyter Notebook6 accessible via the odMLtables documentation7.

Scenario 1: How to generate a metadata template without programming

In conducting animal experiments, a typical scenario where metadata are collected man-

ually on a daily basis is the creation of an animal score sheet. Such score sheets record

quantitative, and in part also qualitative, measures that are collected in order to doc-

ument and judge the animal’s health and state over the duration of the experiment.

Often, these sheets are an obligatory piece of documentation of the experiment, such

that only the availability of a defined workflow to create score sheets guarantees their

consistency over multiple years and different experimenters. For example, for mouse ex-

periments, typical measures are the body weight, water intake and breathing frequency,

many of which can be used to assess the health of an animal, e.g., by calculating a

health score for each mouse (Foltz and Ullman-Cullere, 1999; Burkholder et al., 2012).

In Fig. 3.3 we depicted how metadata of a single, minimized score sheet can be inte-

grated into an odML document containing collective information on a subject.

5https://wiki.python.org/moin/PyQt
6https://jupyter.org/
7https://odmltables.readthedocs.io/en/latest/tutorial.html

53

CHAPTER 3. METADATA MANAGEMENT

The measurements for such score sheets are typically easy to perform, and for this

reason may be conducted by a number of different people in the lab. Therefore, the daily

process must be simple, intuitive, and robust in order to be conducted by all members

of the group. Collecting the information in a table format using common spreadsheet

software tools, such as Microsoft Excel or LibreOffice Calc, satisfies these requirements.

To guarantee a consistent structure of such a score sheet, initially a template needs

to be set up, i.e., a table containing the measures that are to be recorded on a single day.

In order to accomplish this, as a first step we generate an empty template table using

odMLtables. To improve the readability, we enter custom column names in odMLtables

to create the table (’Section’ instead of ’Path to Section’, ’Measure’ instead of ’Property

Name’, ’Unit’ instead of ’Data Unit’, and ’Type’ instead of ’odML Data Type’). Also we

omit the attributes ’Section Definition’, ’Property Definition’ and ’Data Uncertainty’ in

the context of these example scenarios. As second step, using a spreadsheet, we design

the metadata structure for a single score sheet as shown in Fig. 3.5. The value field for

each entry can be either left empty or a default value can be entered. The latter case

is interesting for values that are likely to be constant for the majority of experiments,

e.g., the name of the experimenter. Since the colors of a table saved in the xls format

are ignored when converting to the odML format, it is possible to use arbitrary color

coding within the spreadsheet software to improve the readability of the table for the

experimenters entering the values.

Section Measure Value Unit Type

/Subject/Scores YYYY-MM-DD Experimenter Alice person

Weight g float

Date date

Comment string

Figure 3.5: Template score sheet. The template score sheet contains the measures
required for each measurement day, including optional default values (here: “Alice” for
“Experimenter” and “g” as unit for “Weight”).

We designed the template table such that it matches the properties of the minimized

score sheet section already depicted in Fig. 3.3. Notice that in the template the entry for

column ’Section’ already includes a parent section to reference the animal (cf., Fig. 3.3).

This is convenient for defining the position of each score sheet in the odML hierarchy

to simplify a later merging process (cf., scenario 2).

Scenario 2: Collecting daily observations in a common odML structure

Once the template from scenario 1 is complete, it is copied to a new file on each mea-

surement day, and the copy is filled out by the person taking the measurements. To

avoid that metadata are spread across multiple files and potentially multiple locations,

we aim to gather the data from multiple days into a single odML file. To achieve this,

we use odMLtables to first convert the individual xls file containing an individual score

sheet into the odML format, and to subsequently merge these into a common odML

structure spanning multiple recording days.

54

3.3. EMBEDDING ODMLTABLES IN DATA ACQUISITION AND ANALYSIS

Specifically, the conversion from the xls to the odML format we use the odMLtables

feature F1 (for details of odML features F1- F5, see Section 3.2.2). After the conver-

sion, the current score sheet present in odML format is merged into the common odML

document collecting the complete information of an animal using feature F4 on a daily

basis. This extends the odML structure of the subject document by an additional Sec-

tion each recording day. Note that this is possible because the first column of individual

score sheets (Fig. 3.5) not only provides a unique Section name for each score sheet,

but also indicates the location of the odML Section in the hierarchical structure of the

subject document, (e.g., “Subject/Scores_2000-01-01”). The result is a single odML file

containing measures collected on all recording days while the source files generated each

day can be archived.

The metadata collection containing the merged score sheets of 2 recording days

might look like the following:

Document "mouse-score-sheets"

Section "Subject"

Property "Species": Mus musculus

Property "Birthday": 1999-12-24 12:00:00

Property "uID": asdf1234ghjk56789

Property "Alias":

Section "Scores_2000-01-01"

Property "Experimenter": ["Alice", "Bob"]

Property "Weight": 5g

Property "Date": 2000-01-01

Property "Comment":

Section "Scores_2000-01-02"

Property "Experimenter": "Bob"

Property "Weight": 5.5g

Property "Date": 2000-01-02

Property "Comment": "Small scratch at the right ear"

Scenario 3: Create a tabular representation of the odML file for better view-

ing using the color options

Once the recordings for a number of animals were performed and the corresponding

metadata collection is completed, data and metadata should be shared among collabo-

rators in a common repository. In order to get an overview of the data obtained across

different animals, the metadata of each animal can be converted into the xls format to

simplify the inspection of the associated metadata using spreadsheet software (cf., also,

Fig. 3.3B). Here, odMLtables provides the option to use color coding and highlighting

of default / missing values to improve the readability (Fig. 3.6).

Scenario 4: How to filter a subset of an odML file to edit it later on

As the common odML structure grows day by day it is of advantage to extract specific

subsets of odML values of interest for visualization using the tabular format. Instead

55

CHAPTER 3. METADATA MANAGEMENT

Section Measure Value Unit Type

/Subject Alias string

/Subject/Scores 2000-01-01 Comment string

Figure 3.6: Metadata collection filtered to show only Properties with an
empty value. Missing values entries are highlighted in red by odMLtables.

of visualizing the whole metadata collection to periodically verify that all Properties

are filled with a value, we can extract a subset of the collection and visualize only the

relevant (e.g. empty fields) entries. For this, we use odMLtables feature F5 which can

be used to generate an odML that contains only Properties without value information

specified. We then convert this reduced odML into a tabular xls representation using

odMLtables feature F1. The generated table, as shown in Fig. 3.6 indicating the two

empty properties in the odML structure of scenario 2, can be visualized using spreadsheet

software and, in case of values not being filled, these can be directly edited manually.

Scenario 5: Merging the edited subset back into the original structure

The enriched xls sheet generated in step 4 should now be merged back into the common

odML structure. For this, we convert it back into the odML format and use the odMLta-

bles merge feature F4 to replace the edited values in the common odML structure with

the edited ones. Here, odMLtables merges the two odML files by extending the odML

structure and appending metadata entries when the same Property is present in both

files. However, when modifying already existing metadata entries in the filtered version

this would result in duplication of entries. Therefore, odMLtables offers the possibility

to overwrite already existing metadata entries when merging two odML structures. Note

that a selective merge of a subset of metadata can be achieved by first filtering the file

to be merged using feature F5 .

Scenario 6: Compare entries in the odML file for data screening and lab book

usage

In addition to the complete metadata representation as presented in scenario 3, it is

possible to generate a reduced overview table containing only plain values of selected

Properties. This feature can be used to create a tabular display of Properties of interest

(e.g., weight of a specific animal, experimenter who performed the experiment and

comments regarding the measurement) in rows for the individual recordings (days) in

columns. An example of such a table is given below:

Scores_2000-01-01 Scores_2000-01-02

Date 2000-01-01 2000-01-02

Weight 5.0g 5.5g

Experimenter Alice, ... Bob

Comment Blood sample was taken [...] Small scratch at the right ear

56

3.4. DISCUSSION

This type of overview tables can also be printed and used as part of the mandatory

documentation of the experiment in a written or printed lab book. This way, the

recorded data only need to be documented once in a digital fashion and consistency

between documentation and digitally available metadata is guaranteed.

Scenario 7: Automatized processing of metadata collections

After completion of an experiment covering many recording days, the processing steps

presented in scenarios 1-6 can be performed in an automatized fashion on the complete

metadata collection to generate a comprehensive metadata document and corresponding

overviews. While it is possible to perform this action using the graphical user interface,

an automated approach has the advantage that it can be repeatedly executed when

one of the original files changes, e.g., by a retrospective update of metadata or loss

of the generated metadata files. In addition an automated approach is more robust

against errors introduced by the manual operation and can be at least partially reused

for subsequent experiments.

By use of the odML library together with the odMLtables Python API, users have

a rich collection of functions to manipulate and convert metadata stored in the odML

format. In this specific example, we show an example script in Code Listing 3.1 that

loads all daily animal score sheets, adds them to a common metadata structure and

exports the final document into an overview and comparative xls sheet for visualization.

The code demonstrates the metadata handling workflow by structuring it into a sequence

of three generic functions, which can be of use in creating related workflows for different

projects.

Improved handling and visualization of complex metadata structures

Up to now we demonstrated the basic mechanisms of odMLtables based on highly simpli-

fied examples presented above. In a real world example, however, metadata collections

are inherently complex and corresponding metadata collections can easily encompass

thousands of values. A publicly available example of this are electrophysiological record-

ings of macaque monkeys performing a reach to grasp task that include a rich metadata

collection stored in the original odML files as well as the corresponding xls represen-

tation created by odMLtables (Brochier et al., 2018). We demonstrate the usage of

odMLtables to select and visualize a subset of the complete metadata collection as well

as generation of overview tables in an interactive Jupyter Notebook in the odMLtables

documentation8.

3.4 Discussion

We presented the odMLtables software, which facilitates the use of the odML metadata

format in everyday experimental and data analysis work. In scenarios 1 to 7 we present

the features of odMLtables within a simplified real world example, namely the definition

8https://odmltables.readthedocs.io/en/latest/tutorial.html

57

CHAPTER 3. METADATA MANAGEMENT

1 import os.path, glob

2 import odmltables as odt

3

4 def csv_to_odml(csv_file):

5 """ Convert a score sheet from csv to odML format. """

6 # initialize an OdmlTable object for handling metadata

7 table = odt.OdmlTable()

8 # specify headers used in the score sheet csv files (here: Section, Measure, Unit and Type)

9 table.change_header(Path=1, PropertyName=2, Value=3, DataUnit=4, odmlDatatype=5)

10 table.change_header_titles(Path='Section',PropertyName='Measure', DataUnit='Unit',

odmlDatatype='Type')→֒

11 # load from csv format and save in odML format

12 table.load_from_csv_table(csv_file)

13 table.write2odml(csv_file[:-4] + '.odml')

14

15 def merge_odml_files(file1, file2, overwrite_values=False):

16 """ Merge one odML file (file2) into another odML file (file1) """

17 # load first odML file

18 table1 = odt.OdmlTable(file1)

19 # merge file2 into table1

20 table1.merge(odt.OdmlTable(file2), overwrite_values=overwrite_values)

21 # overwrite file1 with the merged score sheets

22 table1.write2odml(file1)

23

24 def visualize_as_xls(odML_file):

25 """ Generate an xls version of an odML file for visualization purposes """

26 table = odt.OdmlXlsTable(odML_file)

27 # optional: change the color options in the output table

28 table.first_marked_style.fontcolor = 'dark_green'

29 table.second_marked_style.fontcolor = 'dark_teal'

30 table.highlight_defaults = True

31 # write to xls format

32 table.write2file(os.path.splitext(odML_file)[0] + '.xls')

33

34 def generate_overview(odML_file):

35 """ Compare entries with same structure across an odML file """

36 table = odt.compare_section_xls_table.CompareSectionXlsTable()

37 table.load_from_file(odML_file)

38 # specify all score sheet sections to be compared here

39 table.choose_sections('Scores_2000-01-01', 'Scores_2000-01-02')

40 # save to different odML file

41 table.write2file(os.path.splitext(odML_file)[0] + '_overview.xls')

42

43 # extract all metadata files present in this metadata folder

44 folder = 'mymetadatacollection/'

45 source_files = sorted(glob.glob(folder + '/*.csv'))

46

47 # convert all source files

48 for source_file in source_files:

49 csv_to_odml(source_file)

50 # merge score sheets into animal info document

51 for score_sheet in sorted(glob.glob(folder + '/score_sheet*.odml')):

52 merge_odml_files(folder + '/animal_info.odml', score_sheet, overwrite_values=True)

53

54 # create visualization and comparison tables

55 visualize_as_xls(folder + '/animal_info.odml')

56 generate_overview(folder + '/animal_info.odml')

Code Listing 3.1: Program to assemble a target odML document covering metadata
of multiple recording days by pooling information from multiple csv files and gener-
ate visualizations and overviews. Individual functions are automatizing functionalities
presented in previous scenarios.

58

3.4. DISCUSSION

of an animal score sheet and with this the controlled routine collection of corresponding

metadata. More specifically, we showed in scenario 1 the setup of a template for an

animal score sheet in the csv format and its conversion to odML (F1, F2). In the next

scenario, we used this template to routinely collect the animal’s health measures and

aggregated them in a single odML file per animal (F1, F4). Besides a simplification

of metadata acquisition in the csv format, we showed in scenario 3 the benefits of a

colored tabular representation for visual inspection of the collected score sheets (F1).

In scenario 4, we demonstrated how supplements of metadata values can be easily

added by extracting a the missing metadata entries from the complete collection (F5).

Subsequently we demonstrated in scenario 5 the integration of the amended metadata

back into the complete collection (F4). We generated a compressed overview table,

summarizing the metadata from different routine collections in a concise, laboratory

notebook suitable fashion in scenario 6 (F3). Finally, in scenario 7 we discussed the

amortization of the workflow presented in the previous scenarios and provided code

examples showcasing the odMLtables Python interface.

As odMLtables can be used by programmers and non-programmers alike, odMLta-

bles simplifies the development of comprehensive metadata management in the scientific

community by offering user-friendly interaction with the odML format. In this way, its

usage is intended to improve reproducibility and replicability of experiments and to

facilitate cooperative work, both within labs and across different laboratories. Com-

plementing the model scenarios above, in Fig. 3.7 we summarize and generalize the

use of individual components of odMLtables during the course of an entire experiment.

Although the presented scenarios are set in a neuroscientific environment, odML and

odMLtables are indifferent with respect to the scientific discipline and can therefore

be used for metadata management in different contexts. In the following, however,

we discuss specifically its embedding into a tools landscape developing in the field of

electrophysiology.

Although, the real world workflow described in Brochier et al., 2018 and Zehl et al.,

2016 as well as the minimalistic workflow presented here are all set in the field of animal

experiments covering multiple days, odML as well as odMLtables can be used for meta-

data management in a broader context. For example in the context of experimental

research the benefits of odMLtables can be seen at all stages of an experiment: from

setting up a specific metadata structure in the preparatory phase, manual enrichment of

the metadata collection during the experiment, through to the generation of overviews

and summaries from metadata collections during data analysis. Also, for publicly avail-

able datasets with an odML metadata collection, odMLtables can be used to create a

tabular representation of the odML files to quickly scan the metadata of the experiment.

3.4.1 Performance estimation

Since the release of the original version, odML has been used in various projects for

storing metadata as they become available during data acquisition or analysis (e.g. in

59

CHAPTER 3. METADATA MANAGEMENT

the NIX9 and RELACS10 projects), as metadata schema in the EEGbase database11

(see also Mouček et al., 2014), and as a part of the metadata data pipeline as described

by Zehl et al., 2016 and Brochier et al., 2018. The advantage gained by comprehensive

metadata management using odML can be demonstrated by a small example based

on a published dataset (Brochier et al., 2018) for which detailed metadata are stored

in the odML format. Accessing information about the number of neurons recorded

on different electrodes contained in the odML files using common desktop hardware

requires approximately 0.5 seconds for this dataset using the odML iteration and filter

mechanism. Extracting the same information not from the odML metadata but from

the original data files using the Python library Neo version 0.7.112 requires about 25

seconds using the Neo filter and annotation mechanism. Comparing these times, the

usage of odML in this example gives a speedup of a factor 50. However, for a fair

comparison also the time for odML generation needs to be taken into account, which

for a dataset of this complexity is typically on the order of 10 minutes, considering

that the generation process needs to read the data files and a number of associated files

(Zehl et al., 2016), perform various quality checks or automated preprocessing checks.

Comparing this conservative estimate of the generation time of the odML file, the access

time using the odML format and the access time using the original data files shows that

using the odML format pays off after 25 times of metadata access. This is a relatively

small number of metadata accesses for a single dataset considering the relevance of

metadata in multiple steps of the experiment, e.g. exploratory analysis and parameter

scans in analyses runs, and collaborative work, where different people access the same

metadata on different computers. In the latter setting using odML is also of advantage

because the potentially large original data files might not be present on all computers

of all collaborators, whereas odML files are much smaller in file size and can therefore

be shared more easily, e.g., via a version control system like git13.

3.4.2 odMLtables as conversion tool

One may argue that extending the existing odML editor to support a flattened view on

the metadata is a more direct and efficient way to implement tabular representations,

as opposed to a converter (such as odMLtables) between formats. However, such a

solution has direct implications on (i) the maintainability of the tool, (ii) its adoption

by the community, and (iii) its interoperability in the heterogeneous types of workflows

typically encountered in data acquisition. Regarding (i), the development of graphical

editors for tabular data is a time-consuming endeavor and leads to a complex code base

that is difficult to maintain. This is even more true in a scientific environment, where

software maintenance is often left to persons who are not expert in GUI programming

and design patterns for graphical applications. Regarding (ii), spreadsheet software is

9https://github.com/G-Node/nix, RRID:SCR_016196
10https://github.com/relacs/relacs
11http://eeg2.kiv.zcu.cz:8080/home-page?1, RRID:nif-0000-08190
12https://github.com/NeuralEnsemble/python-neo/releases/tag/0.7.1
13https://git-scm.com

60

3.4. DISCUSSION

already commonly used in laboratory environments to track metadata, and experimen-

tal scientists are used to efficiently use these tools in their daily routine. Therefore,

integrating such software in a digitized workflow, rather than proposing an entirely

new user-facing tool, is bound to lower the threshold for adoption in a laboratory. Fi-

nally, regarding (iii), data acquisition workflows in an experimental environment are

often subject to constraints set by the individual formats in which metadata are gen-

erated by the components of the experimental setup. Tabular representations, and in

particular those stored in the csv format, represent per-se one of the most commonly

encountered and most simple formats to exchange data. Indeed, the capability to read

csv data files is provided by the standard libraries of many programming languages,

in particular those commonly used in data analysis and scientific computing, such as

Python, Matlab, or R. Therefore, being able to convert between human readable tab-

ular metadata generated automatically by various metadata sources of the experiment

and their joint representation in a hierarchical odML metadata collection is helpful in

creating a metadata acquisition workflow that is interoperable with the various compo-

nents of the experiment. Combining such workflows with version control systems, such

as git, to store the hierarchical or tabular metadata representations is a viable option

to enable collaborative creation of metadata records, in particular when considering the

text-based csv or and odML formats.

3.4.3 Relation to electronic laboratory notebooks

One particular case where flexible interoperability is in demand are electronic labora-

tory notebooks (ELNs) which are available from a large range of manufacturers and are

becoming increasingly utilized by laboratories (Kwok and Kanza, 2018). Their design

is actively being researched in the process of digitizing the research process (Saman-

tha Kanza et al., 2017). ELNs are software tools originally designed to replace the

hand-written lab book used in experimental sciences to document experiments, out-

comes and analyses by providing a method to electronically enter such metadata in a

digitally signed and potentially encrypted fashion that ensures protection from falsifi-

cation. Some ELNs go beyond this functionality by integrating tightly with laboratory

inventory management systems (LIMS) or analysis pipelines (comparisons of selected

ELNs can be found in (Rubacha, Rattan, and Hosselet, 2011) and various web resources
14 15 16). One major advantage of ELNs that store hard metadata (Grewe, Wachtler,

and Benda, 2011) in form of key-value pairs is that they can be directly digitally ac-

cessed in analysis scripts, rather than having to manually copy the information from

the hand-written lab book (Zehl et al., 2016). While for some disciplines specialized

lab notebook software packages have been developed (Kwok and Kanza, 2018) that are

aware of community standards for storing such metadata, most of these packages come

with their own format for storing data that can only be accessed via file export func-

tionality or specific APIs. In some disciplines this may be of little importance, since

14https://datamanagement.hms.harvard.edu/electronic-lab-notebooks
15https://www.labfolder.com/electronic-lab-notebook-eln-research-guide
16https://www.gurdon.cam.ac.uk/institute-life/computing/elnguidance

61

CHAPTER 3. METADATA MANAGEMENT

either the metadata records stored in the ELN are not required in the analysis process,

or the metadata are captured using a domain-specific ELN that is integrated with func-

tionality to directly perform the analysis steps from within the ELN. Nonetheless, other

disciplines, such as neurophysiology, require detailed metadata available in an environ-

ment suitable for performing complex, exploratory analysis protocols that go beyond

the capabilities of currently available ELNs. Here, odML is a potential candidate for

implementing such features. In absence of a global standard to record metadata, csv

represents one of the de-facto standards to export metadata from ELNs in a univer-

sal format. For this reason, the conversion to odML via odMLtables provides access

to metadata recorded with ELNs for external analysis pipelines that rely on hierarchi-

cally structured metadata collections. The same holds true for the reverse direction,

where metadata generated by tools building on the odML specifications can be imported

into an ELN. For example, the feature of odMLtables to create tabular overviews of the

metadata (feature F3, see Section 3.2.2) would allow to generate current overview tables

in terms of animal score sheets as csv that could be directly (and assuming the ELN

has an API, even automatically) integrated into the documentation of an experiment

contained within an ELN, assuming only basic csv import capabilities.

Beyond ELNs, labs increasingly resort to institution-wide databases to manage and

record their research activities, and, in some cases, even the data as such. Depending

on the architecture, some systems are likely to implement data imports using tabular

schemata. One example of such a tool implementing database and processing functional-

ity is DataJoint17 as a tool to assist in ingesting, combining and analyzing heterogeneous

data in a relational database (Yatsenko et al., 2015). It is easy to populate a Data-

Joint database using tabular data, as described in detail in the accompanying online

documentation. For example, one may extract a subset of the metadata in form of a

comparison table using the odMLtables feature F3, and then incorporate this table into

a larger DataJoint database spanning all experiments using a generic function for pop-

ulating from csv tables. In such a fashion, odMLtables presents a gateway to integrate

structured metadata by the diverse tools used in a laboratory to organize the record

keeping of an experiment.

3.4.4 Outlook

The current version of odMLtables provides a set of core functions that were identified

as necessary in co-designing various data and metadata acquisition workflows in col-

laboration with multiple laboratories spanning different types of experiments and data

modalities. Nevertheless, a number of additional features are envisioned as a result of

feedback stemming from these collaborations to extend the range of applications for

the tool and enhance its flexibility for heterogeneous metadata workflows. In addition,

feature requests are welcome on the project’s issue system on github. One next step will

be to extend the capability to create tabular comparisons (feature F3) across metadata

stores in multiple files. This would give researchers the option to query for metadata

17https://datajoint.io/, RRID:SCR_014543

62

3.4. DISCUSSION

that are distributed over several, even differently structured, odML files. For example,

in chronic recordings of brain activity accumulated over the course of multiple months,

researchers may decide to generate a single odML file per recording day, and may want

to utilize such a functionality to compare the number of trials and other performance

measures across the entire recording period.

A second planned feature addition to odMLtables, related to the previous aspect, is

the ability to create complete tabular representations (i.e., feature F1) across multiple

odML files, and vice versa. To this end, one may implement an additional column next to

the odML path and Property name that indicates the file in which a certain metadata

entry is found. As an example application, one may consider a complex experiment

where metadata originating from different parts of the experiment are stored in separate

odML files, but a large overview table is desired for manually browsing the metadata.

While this is already possible by merging (F4) individual files and then converting (F1)

the table, the information about the origin of metadata in the original file structure is

lost.

A third feature addition to odMLtables is the automatic generation of Python code

based on the steps the user performs in the graphical user interface. For example, this

may yield the Python code to perform a certain filter operation designed in the GUI.

This would simplify the automation of metadata processing without specific knowledge

about the odMLtables API.

For communicating the structure of a complex metadata collection to new collabo-

rators neither tabular nor hierarchical views have been found to be efficient. For this, a

graphical representation of the metadata structure is likely to be more useful, especially

for large metadata collections. For this reason, a fourth addition to odMLtables would

be to introduce a common graphical representation as new output conversion format.

Lastly, as a fifth feature addition, odMLtables could assist scientists in defining the

links between data and metadata in an experiment. Typically, several metadata are

accumulated from various sources in an experiment that are directly related to one par-

ticular part of the data, and in fact, may be crucial in performing data analysis. For

example, the signal recorded from a particular electrode may contain the impedance as

measured by the manufacturer as well as noise estimated from a pre-processing step.

Due to the heterogeneity of experiments and metadata descriptions, it is currently not

feasible to establish these connections between data and metadata automatically, e.g.,

using a predefined mapping based on Property values. Instead, the mapping is carried

out manually by implementing customized code that annotates data with metadata dur-

ing the loading process. Even when data can be loaded via standardized data framework

(e.g., Neo18, see also Garcia, Guarino, et al., 2014), the annotation of data objects with

metadata taken from a standardized metadata collection (e.g., odML), has to be per-

formed independently (see Fig. 3.7). This complicates the process of reading data, and

is not transparent to an external user. A possible way of reducing the implementa-

tion effort to create experiment-specific annotation of data with metadata, would be to

18https://github.com/NeuralEnsemble/python-neo, RRID:SCR_000634

63

CHAPTER 3. METADATA MANAGEMENT

store the relations between data and metadata directly in the metadata structure. For

example, using odMLtables, we suggest to add supplementary fields to the table that

directly link blocks of metadata to specific data, e.g., to channels with a certain channel

ID or to events with specific IDs. In this way, compact objects containing both data and

selected metadata could be loaded using a single, generic loading routine. Moreover, by

providing odMLtables with a feature to export to NIX19, e.g. using the odML-NIX con-

version tool20, as an additional output file format that combines odML-like metadata

with primary data (Stoewer et al., 2014), such that combined data/metadata objects

could be easily serialized to disk.

Validation of user generated input is implemented on the level of odML: When sav-

ing or loading an odML file via odMLtables or any other method, the odML structure is

checked for basic integrity (e.g. consistency of data types and values). It is intended to

support custom, user defined validations in future releases. That is, users will be pro-

vided with the means of defining own valuations to check for specific required Sections,

Properties or Values and combinations thereof. These additional validations will be di-

rectly stored within the odML files. They can be applied to ensure metadata consistency

even if the file is handled on a different host or by a different person. For example users

would be able to define specific Values as required for a particular Property or make

sure a Section tree with an experiment-specific content is present before the file can be

saved.

In recent years, the scientific community has begun to recognize the need for devel-

oping workflows that enable rigorous data management not only to ensure reproducibil-

ity, but also to expedite research through efficient data sharing among scientists. The

principles governing corresponding data management practices are summarized under

the FAIR (Findable, Accessible, Interoperable, Reusable) principles (Wilkinson et al.,

2016). The requirement to make data globally findable has lead to the emergence of

multiple resources commonly grouped under the term “Knowledge Graph”, referring to

a graph-like linkage of metadata through an appropriate ontologies, for example, as

done in the Knowledge Graph of the Human Brain Project21. The resource description

format, RDF22, is a semantic web technology that provides one possible standard inter-

face to populate such metadata graphs (cf., Fig. 3.7). The complexity of creating RDF

descriptions from scratch can be simplified by exploiting the functionality of odML to

export RDF schemata from odML files. In this context, odMLtables can be incorporated

as a bridge to support researchers in easily entering predefined metadata schemata to

expose their data records in large-scale Knowledge Graph infrastructures.

odMLtables is actively developed and a comprehensive documentation including a

tutorial is available for release versions on ReadtheDocs23 and the latest version can

be obtained from GitHub24. Future developments of odMLtables include the ongoing

19http://g-node.github.io/nix, RRID:SCR_016196
20https://github.com/G-Node/nix-odML-converter
21https://www.humanbrainproject.eu/en/explore-the-brain
22https://www.w3.org/RDF
23https://odmltables.readthedocs.io/en/latest
24https://github.com/INM-6/python-odmltables/

64

3.4. DISCUSSION

o
d
M

L
t
a
b
le
s

S
p
re
ad
sh
ee
t
S
of
tw
ar
e

C
on
ve
rt

(F
1)

o
d

M
L

C
om

p
ar
e
(F
3)

o
d

M
L

M
er
ge

(F
4)

o
d

M
L

o
d

M
L

o
d

M
L

F
ilt
er

(F
5)

o
d

M
L

o
d

M
L

T
em

p
la
te

(F
2)

o
d
M

L

N
e
o

N
I
X

D
at
ab
as
e

E
xp

er
im

en
t

P
re
p
ar
at
io
n

E
xe
cu
ti
on

R
ep
or
t

D
oc
u
m
en
ta
ti
on

A
n
al
ys
is

S
h
ar
in
g

P
u
b
lic
at
io
n

In
d
ex
in
g

F
ig

u
re

3
.7

:
In

te
g
ra

ti
n
g

o
d
M

L
t
a
b
le

s
a
n
d

o
th

e
r

so
ft

w
a
re

to
o
ls

in
th

e
d
iff

e
re

n
t

st
a
g
e
s

o
f
a
n

e
x
p
e
ri

m
e
n
t

fr
o
m

p
re

p
a
ra

ti
o
n

to
p
u
b
li
-

c
a
ti
o
n
.

D
u
ri
n
g

th
e

p
re

p
ar

at
io

n
of

an
ex

p
er

im
en

t
o
d
M

L
ta

b
le

s
in

co
m

b
in

at
io

n
w

it
h

sp
re

ad
sh

ee
t

so
ft

w
ar

e
is

u
se

d
to

d
ev

el
op

an
ex

p
er

im
en

t
sp

ec
ifi

c
st

ru
ct

u
re

of
th

e
m

et
ad

at
a

co
ll
ec

ti
on

(t
em

p
la

te
s,

F
2)

.
D

u
ri
n
g

th
e

ex
ec

u
ti
on

an
d

d
o
cu

m
en

ta
ti
on

of
th

e
ex

p
er

im
en

t,
o
d
M

L
ta

b
le

s
co

n
ve

rt
s

(F
1)

b
et

w
ee

n
th

e
ta

b
u
la

r
an

d
o
d
M

L
re

p
re

se
n
ta

ti
on

s.
T

h
e

co
m

p
ar

e
fu

n
ct

io
n
al

it
y

(F
3)

is
u
se

d
to

ge
n
er

at
e

ov
er

v
ie

w
s

of
o
d
M

L
P

ro
p
er

ti
es

ac
ro

ss
d
iff

er
en

t
S
ec

ti
on

s
of

a
m

et
ad

at
a

co
ll
ec

ti
on

.
T

h
e

fi
lt

er
(F

5)
an

d
m

er
ge

(F
4)

fu
n
ct

io
n
al

it
ie

s
ar

e
u
se

d
to

cr
ea

te
an

d
m

er
ge

su
b
se

ts
of

o
d
M

L
co

ll
ec

ti
on

s,
re

sp
ec

ti
ve

ly
.

F
or

an
al

y
si

s
an

d
sh

ar
in

g,
d
at

a
ca

n
b
e

re
p
re

se
n
te

d
u
si

n
g

th
e

N
eo

fr
am

ew
or

k
an

d
an

n
ot

at
ed

w
it
h

m
et

ad
at

a
fr

om
th

e
o
d
M

L
m

et
ad

at
a

co
ll
ec

ti
on

u
si

n
g

cu
st

om
sc

ri
p
ts

.
T

h
is

co
m

b
in

ed
re

p
re

se
n
ta

ti
on

ca
n

b
e

sa
ve

d
in

a
si

n
gl

e
fo

rm
at

u
si

n
g

th
e

N
IX

fr
am

ew
or

k
,
e.

g.
,
to

sh
ar

e
of

d
at

a
an

d
m

et
ad

at
a

v
ia

a
d
at

ab
as

e.
In

p
ar

al
le

l,
m

et
ad

at
a

co
ll
ec

ti
on

s
ca

n
b
e

in
co

rp
or

at
ed

in
d
at

ab
as

es
,
fo

r
ex

am
p
le

u
si

n
g

an
ex

p
or

t
of

th
e

o
d
M

L
to

th
e

R
D

F
st

an
d
ar

d
.

65

CHAPTER 3. METADATA MANAGEMENT

embedding of odMLtables in different neuroscientific data and metadata aggregation

workflows, and, as a long term prospect, odMLtables is planned to become a fully

integrated component of the odML and NIX libraries.

By permitting the easy access, modification and visualization of metadata collections

based on the odML, odMLtables facilities the implementation of the FAIR principles for

scientific data management and stewardship (Wilkinson et al., 2016) in an experimental

environment. Additionally it promotes the usage of standardized formats, driving the

community further towards the application of the FAIR principles.

66

Chapter 4

Standardized data representations

- Making data usable

For widely accepted and utilized and interoperable data storage and usage, as suggested

by the FAIR principles for scientific data management (Wilkinson et al., 2016), it is nec-

essary to agree on common file formats for storage on disc as well as data representations

in memory. The agreement on data standards can develop in a i) community driven

way by groups of users adopting a format and therefore forming the basis for a general

spread of the format or ii) industry defined, by companies or organizations defining a

standard. In the context of data storage and representation there are numerous stan-

dards already defined and maintained. For example the World Wide Web Consortium1

is an international community, that is coordinating the development and maintenance

of open standards to ensure the long-term growth of the internet. This includes e.g. the

widely spread scalable vector graphics (svg) format and the Hypertext Markup and Ex-

tensible Markup Languages (html, xml, respectively). These standards were developed

in a community driven way, and are still continuously improved by working groups2

(e.g. the svg2 format3).

Standards as they are defined by the World Wide Web Consortium affect millions of

users and computer systems. Therefore, the issue of standardization forms a foundation

for a working system with this large number of participants. On smaller scales, however,

the topic of standardization is not as pressing as individual members are typically able

to develop a system, which meets their requirements and often does not require inter-

action with other systems. At the same time the complexity and specificity of the data

and metadata to be represented increases since more detailed information needs to be

captured and tracked in a consistent manner. This leads to a an unproportionally high

effort required when interacting with other members of the community since the locally

established implicit agreements on data storage and handling need to be communicated

in addition to the actual data content.

One way even smaller communities can benefit from standardized data representa-

1W3C, https://www.w3.org/
2W3C working groups, https://www.w3.org/Consortium/activities
3svg2, https://www.w3.org/TR/SVG2/

67

CHAPTER 4. DATA REPRESENTATION

tions from an early stage on is the introduction of standards from the recording system

manufacturing side. This situation is more likely to occur if only very few experimental

systems exist (e.g. particle physics and the root format (Brun and Rademakers, 1996))

or only few manufacturers produce experimental setups, which simplifies the coordina-

tion between these (e.g. medical imaging and the Digital Imaging and COmmunications

in Medicine (DICOM) standard4). Based on this, the neuroimaging community man-

aged to extend the standard to coherently organize metadata with data in the Brain

Imaging Data Structure5 (Gorgolewski et al., 2016).

Standards can emerge from a community or can be established by dominating enti-

ties, e.g. in case of a monopoly for hardware production. However, also the development

of tools used within and across communities is tightly linked the definition of standards,

as these form a prerequisite for interacting with the data. This interaction works both

ways: the establishment of standards is important for the development of tools to en-

able them to get the most information out of the datasets, but also tools can influence

the establishment of standards especially in small communities by favouring one format

over another and therefore influencing the community preferences. The development of

tools applicable across communities requires the prior adoption of global standards, as

community internal evolved agreements are typically too diverse to be transferred to

other communities to form a basis for a common set of tools.

A prime example for the delayed recognition for the need of standardization is the

development of data formats in the field of electrophysiology. Here specific requirements

are needed when recording electrophysiology datasets: The file formats need to be able

to support writing of large amounts of data in a streaming fashion, they have to cope

with the custom data structure generated by the recording system and they need to doc-

ument the parameters used during the recording as minimal metadata. This, together

with a number of companies developing ready-to-use solutions for experimentalists led

to a multitude of file formats (see also Fig. 4.2). All systems permit experimentalists to

record data without investing years into the development of a recording system but also

typically provide only very few supported output file formats. This again restricts the

number of easily applicable analysis methods, as the vendor may provide tools for basic

visualization, processing and simple analysis the data, but these are typically not easily

extendable nor do they provide a simple programming interface for the implementation

of custom analyses. This unnecessarily restricts the scientific questions which can be

answered with a particular dataset based on the producer of the hardware system.

A project introducing a common output file format for electrophysiology recording

systems is Neuroshare 6. Version 1.0 was released in 2003 and is a C based library relying

on direct-link libraries for the integration with recording systems and providing scripts

for the integration in a Matlab environment. However, neuroshare was only taken up

by few vendors of electrophysiology setups, as these are required to provide integration

4DICOM, https://www.dicomstandard.org/
5BIDS, https://bids.neuroimaging.io/
6Neuroshare, http://neuroshare.org/

68

4.1. THE NEO PYTHON PACKAGE

routines for their acquisition system. Additionally, Neuroshare was mainly developed

for Windows based systems, making it complicated to use in combination with other

operating systems. In 2010 a Python implementation of Neuroshare was introduced7,

which is currently not maintained.

Since then, multiple projects attempt to tackle this problem from different angles:

The Neurodata Without Borders: Neurophysiology8 (NWB:N) (Teeters et al., 2015)

project attempts to define an additional, more generic file format standard aiming to

replace a multitude of existing formats. This project was launched in 2014 and a second

version was released in 2019 (Rübel et al., 2019). The project involved multiple scien-

tific laboratories, funding agencies as well as industry partners and provides a fixed set

of structures to describe common data encountered in this collaboration. The NWB:N

format is not supported by major recording setup manufacturers and therefore no file

format generated by common electrophysiological recording setups. Instead primary

recording data need to be converted into the NWB:N format. Another project tackling

the same problem is the Python package Neo. Neo is a spin-off of the Neurotools tool-

box, an attempt to set up a common file format for neurophysiology setups based on

Microsoft dynamic-link libraries. It was initiated in 2009 and in contrast to NWB pro-

vides a standardized in memory data representation for electrophysiology data without

introducing another file format. Therefore it bridges the gap between available electro-

physiology file formats and forms the basis for a number of visualization, preprocessing

and analysis tools. By interfacing to a large number of file formats Neo is the ideal tool

for implementing flexible data management workflows independent of the particular file

format of the original data files. In addition, it provides also flexibility in the range of

software tools that can be used for further data processing as it interfaces with vari-

ous tools that cover diverse requirements of data processing, visualization and analysis.

In the following we will introduce Neo in more detail and provide example scripts for

application of Neo for handling electrophysiology datasets.

4.1 The Neo Python package

Neo9 (Garcia, Guarino, et al., 2014) is an open-source Python package for represent-

ing electrophysiology data in working memory. It offers interfaces for reading vari-

ous electrophysiological proprietary and open file formats and represents the data in a

generic way (Figs. 4.1 and 4.2). Thus it forms the bases for a number of open software

tools: The electrophysiology analysis toolkit10 for analysis of spiking activity and local

field potentials, OpenElectrophy11, SpykeViewer12 and Ephyviewer13 for visualization,

7python-neuroshare, https://github.com/G-Node/python-neuroshare
8
NWB:N, https://www.nwb.org/

9
Neo, http://neuralensemble.org/neo, RRID:SCR_000634

10Elephant, http://neuralensemble.org/elephant, RRID:SCR_003833
11OpenElectrophy, http://neuralensemble.org/OpenElectrophy, RRID:SCR_000819
12SpykeViewer, https://spyke-viewer.readthedocs.io
13Ephyviewer, https://ephyviewer.readthedocs.io

69

CHAPTER 4. DATA REPRESENTATION

Event

Block

Unit

SpikeTrain

Segment

Waveform

Neo 0.7 architecture

Epoch

AnalogSignal

IrregularlySampledSignal

ChannelIndex

Figure 4.1: Neo 0.7 object structure. Figure modified from https://github.com/
neuralensemble/python-neo.

Tridesclous14 for online and offline spike sorting, NeoAnalysis15 (B. Zhang, Dai, and T.

Zhang, 2017) for rudimentary visualization and analysis, NetworkUnit 16 for validation

testing of spiking networks. Related packages are NiBabel17, a comparable package for

neuroimaging file formats and MNE 18 an Python package for MEG and EEG analysis

and visualization.

The two main features of Neo are 1) the interfacing to many different file formats, by

providing reading capability for numerous proprietary formats and writing capability to

selected open formats and 2) the standardized representation of electrophysiology data

as a basis for further visualization and analysis steps. Using these features of Neo is

typically used either as conversion tool from specialized to more generic formats or as

run time data representation for further processing.

4.1.1 Feature updates and current development

The Neo version 0.3 was released in 2014 (Garcia, Guarino, et al., 2014). Since then

the software has been extended to be compatible with more data formats, the object

model has been revised for better usability and the implementation has been improved

for performance. In the following we describe the enhancements introduced between

version 0.3 (Fig. 4.3) and version 0.7 (Fig. 4.4).

14Tridesclous, https://tridesclous.readthedocs.io
15NeoAnalysis, https://github.com/neoanalysis/NeoAnalysis
16NetworkUnit, https://github.com/INM-6/NetworkUnit, RRID:SCR_016543
17NiBabel, https://nipy.org/nibabel, RRID:SCR_002498
18MNE, https://martinos.org/mne, RRID:SCR_005972

70

4.1. THE NEO PYTHON PACKAGE

AlphaOmega AsciiSignal AsciiSpikeTrain Axograph Axon

BCI2000 Blackrock Blackrock BrainVision BrainwareDam

BrainwareF32 BrainwareSrc Elan Igor Intan

KlustaKwik Kwik Micromed NSDF NeoHdf5

NeoMatlab Nest Neuralynx Neuralynx NeuroExplorer

NeuroScope Neurosharectypes Nix Nix OpenEphys

Pickle Plexon RawBinarySignal RawMCS Spike2

Stimfit Tdt WinEdr WinWcp

Neo

Visualization

Analysis

Simulation

Databases

ElephantTrisdesclous OpenElectrophy

PyNN

NetworkUnit

ephyviewer

SpykeViewer

GIN

Figure 4.2: Neo embedding. Neo 0.7. supports a number of file formats for reading
(light blue) and writing (dark blue). Many of the supported formats can be read in
a improved fashion, permitting for more efficient memory usage (black frames). Neo
provides an interface for many advanced tools for visualization, simulation, analysis and
data storage.

71

CHAPTER 4. DATA REPRESENTATION

Neo 0.3 architecture

Figure 4.3: Neo 0.3 architecture. Neo represents electrophysiology signals in data
objects such as AnalogSignals, AnalogSignalArrays, IrregularlySampledSignals,
SpikeTrains and Spikes, whereas the latter two optionally include information about
waveform data for each spike. Additional supplementary information describing the tim-
ing during the recording can be provided using Events and EventArrays or Epochs and
EpochArrays to mark time points or durations during the recording, respectively. All
above described data objects are put into relation by container objects, such as Segments
(grouping all data objects simultaneous in time), Units (grouping SpikeTrains and
Spikes across time), and RecordingChannels and RecordingChannelGroups (group-
ing AnalogSignals IrregularlySampledSignals and Units, AnalogSignalArrays and
RecordingChannels, respectively). The top level container is a Block linking to
Segments and RecordingChannelGroups. Figure from https://neo.readthedocs.io/en/
0.3.3.

72

4.1. THE NEO PYTHON PACKAGE

Figure 4.4: Neo 0.7 architecture. Neo represents electrophysiology signals in data ob-
jects such as AnalogSignals, IrregularlySampledSignals and SpikeTrains optionally
including information about waveform data for each spike. Additional supplementary
information describing the timing during the recording can be provided using Events or
Epochs to mark time points or durations during the recording, respectively. All above
described data objects are put into relation by container objects, such as Segments
(grouping all data objects simultaneous in time), Units (grouping SpikeTrains across
time) and ChannelIndexes (grouping AnalogSignals IrregularlySampledSignals and
Units). The top level container is a Block linking to Segments and ChannelIndexes.
Figure modified from https://github.com/neuralensemble/python-neo.

73

CHAPTER 4. DATA REPRESENTATION

Figure 4.5: Proposed Neo architecture. The proposed Neo architecture preserves
all objects from Neo version 0.7 except for ChannelIndexes and Units. These are
replaced by Group and View objects, which a more generic, but still customizable way of
organizing data objects. View objects can mask data objects by linking to a subset of the
contained data (e.g. a single trace of an AnalogSignal. This linking is unidirectional,
preventing complex dependencies involving data objects. Groups are capable of linking
to any kind of data objects or View of data objects. The required specificity is provided
by the different modes of a Group object. These limit to the connected objects to a
specific type and number, wherefore a Group can e.g. be used instead of a Unit object.
Groups can also link to other Group objects to provide higher level organization of the
data.

74

4.1. THE NEO PYTHON PACKAGE

Interfaces to file formats Neo 0.7 is supporting additional file formats for reading,

such as Axograph, OpenEphys, Stimfit, Kwik, Nix, Igor, Nest, Neuralynx, NSDF and

BCI2000. The capabilities for reading the Axon, Blackrock, Brainvision, Brainware, El-

phy, Intan Matlab structures, Neuroshare, Plexon, Spike2, Tdt, NeuroExplorer, Neural-

ynx, Igor, Elan, Micromed, RawMCS, WinWCP formats have been improved. Reading

and writing capabilities have been improved for Nix and Pickle formats. PyNNText and

PyNNNumpy formats are no longer supported. A new code design for readers has been

implemented and the majority of readers has adjusted accordingly to enable improved

loading performance and loading of subsets of data (RawIO implementation).

Object structure and usability The code has been modularized for more flexibil-

ity and maintainability, and a large number of unittests have been added. The object

structure has been restructured for user friendliness and to boost performance by im-

plementing sets of similar data entities in single objects instead of using individual data

objects for each data entity (removal of dedicated array versions of data classes). A

new relational container object Channel_Index was introduced to simplify the repre-

sentation of logical relations between data objects replacing RecordingChannel and

RecordingChannelGroup objects. Consistent deep copy functionality has been added

for all data objects and additional internal consistency checks have been added. A new

type of custom annotation mechanism has been added, which is designed to capture

custom annotations in the same dimension as the data (array annotations). For the

installation additional option were introduced, depending on the required file formats

which need to be supported. The code style has been adjusted to follow the PEP8

guideline19(PEP 8 – Style Guide for Python Code 2019). Support for Python 2.6 was

dropped and consistent support for Python 3 was introduced.

Outlook Practical application of Neo confirmed an improved usability for version 0.7.

The described data objects facilitate data access and performance and the combination

of Block and Segment objects as container objects provides easy to use access to the

data. However, the concept of ChannelIndex objects is covering too many aspects

of relations between data at once: 1) grouping data objects, 2) masking data objects

(selection of a subset of data within a data object) and 3) annotating individual samples

within data objects. The last aspect has been moved to the individual data objects, by

introducing array annotations.

For future versions, the splitting of ChannelIndex objects into two separate objects

(Group, View) responsible for grouping and masking is planned. A Group object will

be able to link different types of data objects, depending on its configuration. For

example a Group object resembling a physical electrode will be able to link to a single

AnalogSignal and multiple Unit objects. A View object can be used to refer to a

subset of the data stored in a data object (e.g. a single recording trace within an

AnalogSignal). This view can be used instead of a data object in any relation and will

provide utility functionality to provide a sliced version of the actual data object.
19Python Enhancement Proposal 8, https://www.python.org/dev/peps/pep-0008

75

CHAPTER 4. DATA REPRESENTATION

Another topic of discussion is the linking between Neo objects. Up to the current

version 0.7 all links between Neo objects can be established bidirectional. However, the

bidirectionality of the linking is not inherently guaranteed, since the generation of a

link does not automatically generate a backward link between Neo objects. Introducing

automatic bidirectional linking would guarantee bidirectional linking, but might com-

plicate the set up of a Neo structure e.g. when reading a data file. There are different

approaches possible to circumvent these problems: i) The use of only unidirectional

links from higher level to lower level objects (top to bottom). This approach would

still provide most of the functionality commonly used. ii) The implementation of a

validation framework, which can on request check if a provided Neo object structure is

fully linked including consistent bidirectional links. A suggested model implementing

the first of the two suggestions is presented in Fig. 4.5. Here links from Views and

Groups towards data objects are unidirectional, therefore preventing cyclic links across

the complete Neo structure.

Spiking activity of individual neurons can not only be recorded using sharp elec-

trodes, but also from multielectrode array recordings (MEA) and calcium image record-

ings (Kelly et al., 2007; Shew, Bellay, and Plenz, 2010). To support the usage of Neo

also for imaging data an extension of Neo by two additional object types is planned:

the ImageSequence object will capture sequences of regularly sampled images and is

therefore closely related to the AnalogSignal as it contains the same type of data, but

also captures the spatial relation between different pixels (traces). A second object

relevant for image handling is a RegionOfInterest object, which is used to spatially

mask a specific part of a stack of images. The RegionOfInterest can implemented as

special case of a View. Support for ImageSequences also requires capabilities to read

imaging data formats, which will be added subsequently.

4.1.2 Neo object structure

Neo objects can be separated into two types: data objects, describing basic recording

data in combination with minimal metadata and container objects, providing the struc-

tural framework for the relation between the data objects (Fig. 4.1). In general, all

Neo objects have three optional arguments to provide custom information about the

captured data: 1) The name attribute can be used to label the object and can be used

for simple data filtering and selection. 2) The description attribute is intended to

provide a human readable, detailed, 1-2 sentence description for the data contained /

grouped by the Neo object. The file_origin is can be used to describe the origin

of the data, e.g. the original recording filename or simulation script. In addition to

name, description and file_origin, all Neo objects can capture additional custom

information in form of an annotation dictionary. This dictionary can contain arbitrary

data in all basic Python data types as well as datetime, date, time, timedelta in

arbitrary structures build from lists, dictionaries, tuples or Numpy arrays without any

restrictions on the shape of these objects.

76

4.1. THE NEO PYTHON PACKAGE

Data objects Data objects are based on Numpy arrays (Walt, Colbert, and Varo-

quaux, 2011) for efficient computation on large datasets. In addition, Neo objects are

aware of physical quantities by using the Quantities package (Dale, 2019) (Fig. 4.1).

Neo provides data objects to capture regularly as well as irregularly sampled con-

tinuous signals in AnalogSignal and IrregularlySampledSignal objects, respectively.

Both objects rely on a 2 dimensional Quantities (Numpy) array capturing the basic data

signal, whereas the first dimension describes the time and the second dimension differ-

ent signal traces. For IrregularlySampledSignals time information is captured in a

second separate Quantities array, sharing the first dimension with the signal array. For

AnalogSignals this in implemented in a more compact fashion by storing only the sam-

pling rate (sampling_rate) and the starting time point of the recording (t_start). A

Quantities array containing the time values corresponding to the data point can be gen-

erated on request via the times attribute of the AnalogSignal. For time series data Neo

provides a SpikeTrain object, capturing the data in a times attribute. Additionally

the start and stop times of the data acquisition are essential for the interpretation of the

data, these are provided as mandatory t_start and t_stop scalar Quantities parame-

ters. Optionally, a SpikeTrain object can also capture snippets of regularly sampled

continuous signal around each time point in the waveform attribute. This links to a

3 dimensional array, capturing the time, spike ID and recording channel dimensions of

the waveforms. The SpikeTrain attribute sampling_rate is used to capture the cor-

responding sampling information as in the AnalogSignal case. To relate the waveform

snippets with the time series data the Quantities scalar left_sweep defines the constant

offset between the time series data and the corresponding waveform snippet. A different

type of time series data is non-neuronal time series which describe specific time points

or durations during the recording of neuronal activity. These might be control signals

of the experiment, e.g. trial start times, behavioral events of the subject, e.g. a the

time in which a button was pressed. For the description of time series data Neo pro-

vides Event objects, capturing the data in a one dimensional Quantities array (times

attribute) together with a string array of the same shape (labels attribute) providing

labels to the individual time points. To represent extended periods of time, Neo offers

Epoch objects having the same attributes as Events, and in addition a one dimensional

Quantities array of durations with the same shape as the main time series data.

All of the above mentioned data objects consist of a main Quantities-wrapped Numpy

array with one or more dimensions. One of the latest features introduced in Neo is to

implement a second kind of annotation mechanisms on this. The annotations of an ob-

ject always refer to the object as a whole. However, in many use cases annotations have

been used to provide details about the individual data samples by containing arrays,

which share some dimensions with the main data samples. For example AnalogSignals

which contain more than one recording trace are frequently annotated with list provid-

ing detailed information about the individual recording channels, e.g. the identity of

the channel or the particular filter settings. However, when modifying the shape of the

original data, these annotations can not be updated in an automatic fashion since they

77

CHAPTER 4. DATA REPRESENTATION

were user defined and didn’t follow a fixed schema. Since Neo version 0.7.0 all data

objects have an additional feature array_annotations, which fills this gap by provid-

ing an annotation mechanism for capturing sample based annotations, i.e. annotation

entries with the same length as the main data dimension. These array_annotations

are automatically adjusted when the shape of the main data is modified, e.g. by slicing

the data in the time axis or extracting a single signal trace from an AnalogSignal.

The Neo 0.7 release also features a standardized way of optionally loading specific

parts of the data on request. This is of advantage when dealing with datasets which

are large in comparison to the available memory. The new lazy feature permits to

generate the complete Neo structure (Fig. 4.4), but substituting all data objects with

proxy objects, which feature the same attributes and links as classic data objects, but

do not contain the actual data. For accessing the data a load mechanism is provided

which loads the requested parts of the data and provides them in a separate classic data

object not linked to the main Neo structure. Using the lazy mechanism large datasets

can be processed chunk wise without requiring large amounts of memory.

Container Objects Neo container objects provide the structural relations between

Neo data objects. The base object for a dataset is a Block object, containing every-

thing related to the dataset. The Block object can link to a number of Segments

and ChannelIndex objects which can be used to organize data objects according to

their timing, spatial relation or custom grouping aspects, e.g. grouping the data

objects by the signal quality of the contained data. Segment objects are intended

for grouping objects which share the same time frame, e.g. simultaneously recorded

AnalogSignals and SpikeTrains (Fig. 4.4). SpikeTrains from different Segments that

are considered coming from the same source (neuron) can be linked across Segments via

Unit objects. A Unit object again can be grouped together with AnalogSignals and

IrregularlySampledSignals in a ChannelIndex object. In addition to the grouping

functionality, a ChannelIndex object also provides an additional labeling functionality

for child AnalogSignals via the channel_ids and channel_names attributes. These

consist of one dimensional integer and string arrays labeling the individual traces of the

attached continuous signals. Via the mandatory attribute index a selection of the traces

within the linked continuous signals can be done. However, this requires a consistent

ordering of recording traces within all linked continuous signals of a ChannelIndex. All

container objects provide utility functions to facilitate access and selection of data ob-

jects. This is implemented in the form of a filter method, which returns a list of Neo

objects based on a combination of object type, attribute and annotation constraints.

4.2 Neo usage examples

In the following we demonstrate in three practical examples how Neo can be used to

load data from different file formats in a memory efficient manner, access and select

data, annotate and filter data according to custom metadata added and save data in

an open source format.

78

4.2. NEO USAGE EXAMPLES

4.2.1 Loading & visualization

Loading data in Neo is implemented in two stages: First initialization of the reader (IO)

and second reading of the Neo structure. For readers implemented in the standardized

manner (Fig. 4.2, black frame) you need to provide the filename of the dataset to load.

This will generate an io object providing functionality to load the data into a Neo

structure. Depending on the file format either a Neo Block or a Neo Segment can be

loaded using the read_block or read_segment method of the io object.

In this example, the published dataset described in Chapter 2 is used for demon-

strating the loading of electrophysiology data into the Neo structure (Code Listing 4.1).

Data were previously downloaded from GIN20 and continuous as well as sorted spiking

data are loaded using the Neo BlackrockIO class. This IO provides standardized access

to the data, permitting lazy loading of Neo objects (cf. Code Listing 4.1 line 10f).

Here the Neo filter functionality is used to select all SpikeTrains which have an an-

notation key ’channel_id’ and the corresponding value of the user requested channel

index (selected_channel, line 13). In the next step, the corresponding AnalogSignal

trace is extracted by finding the AnalogSignal with a corresponding entry in the

array_annotations with key channel_ids and extracting the id of the correspond-

ing trace (line 15-18). Finally, the analog and spiking data of 10 seconds of recording

are loaded into memory via the load mechanism of the respective data objects and

returned by the load_single_channel_data function (line 19-22).

The visualization of a single AnalogSignal trace together with spiking activity from

multiple SpikeTrains is implemented in the plot_data function. This requires the

corresponding data objects as input as well as a location to store the final scalable

vector graphics plot (line 25). Here, Matplotlib (Hunter, 2007) is exploited to visualize

the electrophysiological data (line 30 & 34-38). Correct scaling of the signals and

automatic generation of axis labels is ensured by the inherent use of the Quantities

package within Neo (line 28-31, 34-37). The resulting plot is exported to the scalable

vector graphics (svg) format for storage in a flexible, memory efficient and scalable

manner. Finally, user specific setting are extracted from command line parameters and

both functions are executed sequentially to generate a visualization of a single recording

trace and corresponding spiking activity.

4.2.2 Annotation of data with metadata from odML

Annotations are a key feature of the generic Neo structure to provide the necessary

customizations to be used for a specific dataset. Standard annotations are a feature

of all Neo objects and can be accessed via the annotation attribute. In addition,

Neo data objects also provide a more specific type of annotation mechanism, namely

array_annotations which act in the same manner as regular annotations but are

directly coupled to the dimension of the underlying data. This permits to store metadata

which are linked to individual data entries and handle them in an automatic way when

20https://gin.g-node.org/INT/multielectrode_grasp

79

CHAPTER 4. DATA REPRESENTATION

1 import numpy as np

2 import sys, neo

3 import quantities as pq

4 import matplotlib.pyplot as plt

5

6

7 def load_single_channel_data(data_location, selected_channel):

8 """ Loading AnalogSignal and SpikeTrains from a single electrode. """

9 # initialize the io and loade the Neo data structure in lazy mode

10 io = neo.BlackrockIO(data_location)

11 block = io.read_block(lazy=True)

12 # filter to select spiketrains from specific channel

13 spiketrains = block.filter(targdict={'channel_id': selected_channel})

14 # extract corresponding AnalogSignal and trace id

15 for analogsignal in block.segments[0].analogsignals:

16 if selected_channel in analogsignal.array_annotations['channel_ids']:

17 id = np.where(analogsignal.array_annotations['channel_ids'] == selected_channel)[0]

18 break

19 # load analog and spiking data for 10 seconds of recording time

20 analog_data = analogsignal.load(channel_indexes=id, time_slice=(10 * pq.s, 20 * pq.s))

21 spike_data = [st.load(time_slice=(10 * pq.s, 20 * pq.s)) for st in spiketrains]

22 return analog_data, spike_data

23

24

25 def plot_data(analog_data, spike_datas, plot_location):

26 """ Visualize a single AnalogSignal trace with multiple SpikeTrains """

27 # parameters for axis scaling

28 time_scale, voltage_scale = pq.s, pq.microvolt

29 # plot single analogsignal and all spiketrain data

30 plt.plot(analog_data.times.rescale(time_scale), analog_data.rescale(voltage_scale).magnitude,

lw=1, label='AnalogSignal')→֒

31 ymax = max(analog_data.rescale(voltage_scale)).magnitude

32 for spike_data in spike_datas:

33 unit_id = spike_data.annotations['unit_id']

34 plt.plot(spike_data.rescale(time_scale), np.ones_like(spike_data) * unit_id * ymax / 6,

'|', ms=20, mew=1.5, label='Spikes Unit {}'.format(unit_id))→֒

35 # configure plot labels and add legend

36 plt.xlabel('Time [{}]'.format(time_scale.dimensionality.latex))

37 plt.ylabel('Voltage[{}]'.format(voltage_scale.dimensionality.latex))

38 plt.legend(title='Channel {}'.format(analog_data.array_annotations['channel_ids'][0]),

markerscale=0.4, title_fontsize=7, loc=1, prop={'size': 6})→֒

39 # export plot to svg format

40 plt.savefig('{}.svg'.format(plot_location))

41

42

43 # Calling main functions to load data and plot data specified via command line arguments

44 data_location, selected_channel = sys.argv[1:]

45 channel_data = load_single_channel_data(data_location, int(selected_channel))

46 plot_data(*channel_data, data_location.split('/')[-1])

Code Listing 4.1: Loading data into the Neo framework and visualization us-
ing the Matplotlib package. Required packages are imported (line 1-4) and two
main functions are defined for loading and visualization of the Neo structure:
load_single_channel_data and plot_data. The first one requires the location of the
datasets and the selected channel to plot as command line arguments (line 9). Here, the
dataset is opened using the BlackrockIO in lazy mode and the user-specified channel
is selected and loaded into memory together with the spiking activity (lines 7-22). The
second function visualized a given AnalogSignal together with a list of SpikeTrains
using the Matplotlib package (line 25-40). Finally both functions are run subsequently
using command line parameters for dataset and channel specifications. For the resulting
plot see Fig. 4.6
.

80

4.2. NEO USAGE EXAMPLES

Figure 4.6: Visualizating of the activity recorded on a single electrode. A single trace
of an AnalogSignals contains the voltage samples of a recording electrode (blue). The
corresponding threshold crossing events are split into three different SpikeTrain objects
and time stamps are marked as vertical lines with a Unit specific offset (orange, green,
red).

manipulating the data object. This example demonstrates how to access and modify

regular and array annotations using a metadata collection in the odML format.

Code Listing 4.2 demonstrates two aspects of Neo annotations: firstly annotation ac-

cess via the object attributes annotation and array_annotation and secondly the gen-

eration of (array) annotations. The resulting script output is shown in Code Listing 4.3.

The dataset is loaded in the same manner as in Code Listing 4.1 and annotations and

array_annotations of selected objects are printed using the print_annotations_example

function. The resulting printout shows the different levels of annotations, which are

automatically generated by Neo when loading a dataset from the Blackrock format.

Annotations on the Block level provide general information about the recording session,

whereas SpikeTrains carry very specific metadata about the identity of the object and

its spike sorting classification.

An example for array_annotations is provided for an AnalogSignal. AnalogSignal

objects provide the most metadata as they describe all recording traces they contain

individually (see Code Listing 4.3 line 15-33). Here the AnalogSignal contains 96

recording traces and all array annotations have a matching length of 96. The an-

notated information covers the identity of the electrodes (’channel_ids’ and ’chan-

nel_names’, line 16f) and identity within the recording system (’connector_ID’ and

81

CHAPTER 4. DATA REPRESENTATION

’connector_pinID’, line 19f) as well as signal processing parameters for signal filtering

and spike extraction (line 21-30). Here the keys consist of a combination of the file

type affected (nsx/nev), the filter border (high/low), the general parameters (freq/en-

ergy_threshold/dig(itization)_factor/waveform_size) and filter parameters affected (cor-

ner/order/type). In addition, a human readable description as well as information about

the originating file is provided (’description’, ’nsx’ and ’file_origin’, line 18, 31f). All

array_annotations will automatically be adjusted when the underlying data object is

modified via Neo functions, e.g. via slicing in time.

The second part of the example script (Code Listing 4.2, line 28ff) demonstrates

the generation of additional (array) annotations by loading a metadata collection in the

odML format, extracting relevant information for the interpretation of an AnalogSignal

and adding this information to the AnalogSignal as array annotation. First, an odML

file is loaded using the Python odML library (line 31) and all Sections describing elec-

trodes are extracted to load a mapping between the Blackrock channel IDs provided by

the recording system and the spatially ordered ConnectorAlignedIDs (line 32f), which

are defined in order to indicate an electrode’s spatial position easily. In the next step,

the existing Blackrock ID array annotations of an AnalogSignal are used to gener-

ate the corresponding array of ConnectorAlignedIDs using the previously extracted

mapping b(line 36f). Finally, the new ids are added as a new array annotation to the

AnalogSignal using the array_annotate mechanism (line 38).

The generated array annotations are displayed by printing the complete array anno-

tations of the AnalogSignal again, resulting in Code Listing 4.3 line 43ff. Here, the new

key ’connector_aligned_ids appears containing the corresponding spatially organized

ids of the recording electrodes.

With array annotations and annotations, Neo now offers a mechanisms to provide

custom information for Neo objects as a whole, but also for subsets of data contained

by Neo objects. With these annotation mechanisms it is now possible to directly add

odML content to Neo objects on multiple levels of the data organization. However, this

annotations are not automatically generated yet, since there is no mechanism assigning

data in the Neo structure and metadata in the odML structure. Due to the generality

of Neo and odML structure the is no generic assignment strategy between the two

structures possible, but these relations need to be captured explicitly using an extended

framework.

4.2.3 Saving data & format conversion

Being able to store intermediate preprocessing steps or analysis results in a persis-

tent manner is important for making workflows reproducible. Neo provides the option

to store data in plain ASCII, KlustaKwik (Hazan, Zugaro, and Buzsáki, 2006), Nix

(Stoewer et al., 2014), binary Matlab, Neuroscience Simulation Data Format (NSDF)

(Ray et al., 2016), binary Python pickle and a custom binary format, see also Fig. 4.2.

In this example we focus on the Nix format as it provides the most versatile data stor-

age. Nix is based on an hdf5 (The HDF Group, 1997) backend which provides the

82

4.2. NEO USAGE EXAMPLES

1 import sys, neo, odml

2

3 def pretty_print_dict(dictionary):

4 """Print individual entries of a dictionary in truncated, individual lines"""

5 for k, v in dictionary.items():

6 res = ' {}: {}'.format(k, str(v)).replace('\n', ',')

7 print(res[:75] + '...' if len(res) > 74 else res)

8

9 def print_annotations(obj, mode='annotations'):

10 """Print annotations / array_annotations of a Neo object"""

11 print(type(obj).__name__)

12 if mode == 'annotations':

13 pretty_print_dict(obj.annotations)

14 elif mode == 'array_annotations':

15 pretty_print_dict(obj.array_annotations)

16 else:

17 raise ValueError('Unknown annotation type {}'.format(mode))

18

19 def print_annotation_examples(block):

20 """ Print some example annotations & array annotations """

21 print('Annotations\n---------------')

22 print_annotations(block)

23 print_annotations(block.segments[0].spiketrains[0])

24 print('Array Annotations\n--------------------')

25 print_annotations(block.segments[0].analogsignals[-1], mode='array_annotations')

26

27 def generate_annotations_from_odml(block, odml_filename):

28 """ Extract mapping information from the odml sheet and add it as array annotation to the

data """→֒

29 # loading odml file and extract electrode id mapping

30 doc = odml.load(odml_filename)

31 electrode_secs = doc.itersections(filter_func=lambda x: x.name.startswith('Electrode_'))

32 mapping = {sec.properties['ID'].values[0]: sec.properties['ConnectorAlignedID'].values[0] for

sec in electrode_secs}→֒

33

34 # extract id present in neo block and create new annotation based on mapping

35 original_ids = block.segments[0].analogsignals[-1].array_annotations['channel_ids']

36 connector_ids = [mapping[oid] for oid in original_ids]

37 block.segments[0].analogsignals[-1].array_annotate(connector_aligned_ids=connector_ids)

38

39 # extracting command line parameters, loading data and print default annotations

40 data_location, odml_filename = sys.argv[1:]

41 io = neo.BlackrockIO(data_location)

42 block = io.read_block()

43 print_annotation_examples(block)

44 # extract metadata from odml, add new annotations and print annotations

45 generate_annotations_from_odml(block, odml_filename)

46 print('\n\nNew array annotation "connector_aligned_ids" AFTER annotation generation')

47 print('\tconnector_aligned_ids:

{}'.format(block.segments[0].analogsignals[-1].array_annotations['connector_aligned_ids']))→֒

Code Listing 4.2: Annotation access and editing with odML and Neo. Re-
quired packages are imported (line 1) and three functions for printing annotations

and array_annotations are defined (line 3-25). pretty_print_dict provides
functionality for displaying individual dictionary items in separate lines (line 3-
6). print_annotations uses the previous function to print based on the
mode keyword the annotations or array_annotations of a given Neo object.
print_annotation_example prints a selection of annotations and array_annotations

from a Neo block structure. The function generate_annotations_from_odml ex-
tracts metadata information about the mapping of different types of ids from an
odML file and annotates the corresponding AnalogSignal (line 27-37). Finally, all
functions are demonstrated based on a command line specified data- and metadataset
(data_location and odml_filename, line 40-45). The generated annotations are con-
firmed via a final call of print_annotations (line 46f).

83

CHAPTER 4. DATA REPRESENTATION

1 Annotations

2 ---------------

3 Block

4 avail_file_set: ['ns2', 'nev']

5 avail_nsx: [2]

6 avail_nev: True

7 rec_pauses: False

8 SpikeTrain

9 id: Unit 1000

10 channel_id: 1

11 unit_id: 0

12 unit_tag: unclassified

13 Array Annotations

14 --------------------

15 AnalogSignal

16 channel_names: ['chan1' 'chan2' 'chan3' 'chan4' 'chan5' 'chan6' 'chan7' '...

17 channel_ids: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20...

18 file_origin: ['datasets/i140703-001.ns2' 'datasets/i140703-001.ns2', 'dat...

19 connector_ID: [1 ...

20 connector_pinID: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1...

21 nev_dig_factor: [250 250 250 250 250 250 250 250 250 250 250 250 250 250 ...

22 nb_sorted_units: [2 1 1 2 1 1 1 2 2 2 2 1 2 2 1 2 1 3 1 1 1 3 2 2 2 3 2 1...

23 nev_hi_freq_order: [2 2...

24 nev_hi_freq_type: ['Butterworth' 'Butterworth' 'Butterworth' 'Butterworth...

25 nev_lo_freq_order: [2 2...

26 nev_lo_freq_type: ['Butterworth' 'Butterworth' 'Butterworth' 'Butterworth...

27 nsx_hi_freq_order: [1 1...

28 nsx_lo_freq_order: [4 4...

29 nsx_hi_freq_type: ['Butterworth' 'Butterworth' 'Butterworth' 'Butterworth...

30 nsx_lo_freq_type: ['Butterworth' 'Butterworth' 'Butterworth' 'Butterworth...

31 description: ['AnalogSignal 0 from channel_id: 1, label: chan1, nsx: 2', ...

32 nsx: [2 2...

33

34

35 New array annotation "connector_aligned_ids" AFTER annotation generation

36 connector_aligned_ids: [93 92 94 95 75 96 85 97 86 98 87 88 77 99 66 89 76 90 67 79 58 80 78 70

37 68 60 69 50 59 40 49 30 83 84 73 74 63 64 53 54 43 55 44 45 33 46 34 65

38 24 56 35 47 25 57 26 36 27 37 28 38 29 48 19 39 81 82 71 72 61 62 51 52

39 41 42 31 32 21 22 11 12 2 23 3 13 4 14 15 5 16 6 17 7 8 18 20 9]

Code Listing 4.3: Output of Code Listing 4.2. Listed are the automatically gener-
ated annotations of example Neo objects as extracted from Blackrock recording files.
On the Block level these are dealing with general information about available files and
interruptions in the recording process. For SpikeTrains there is information provided
about the identity and classification of the Unit the SpikeTrain was assigned to. For
AnalogSignals there are arrays describing the attributes of the individual electrode
traces. This includes information about the electrode identities (channel_ids), map-
pings of contacts within the recording system (connector_IDs, connector_pinIDs) and
the applied filter and threshold settings for signal preprocessing and spike extraction.

84

4.3. COMPARISON OF NEO AND NWB:N

flexibility of fast and memory efficient access for large datasets. In addition, Nix is de-

signed to capture data as well as metadata, providing the opportunity to unify both in

a single file and add links between relevant metadata and the corresponding data. This

example demonstrates the conversion of the dataset used already in previous examples

from the Blackrock format to the Nix format. Furthermore, it showcases the addition

of metadata from the odML format to the same file and the extraction of the data from

the Nix file. Code Listing 4.4 provides four functions for the back and forth conversion

of files in the Neo and odML format to the Nix format (line 4-24). These functions are

mostly based on the open-source nix-odML-converter library 21. This library can be used

for simple command line conversion between Nix and odML. Here we demonstrate the

usage of the Python interface, permitting a more flexible approach to conversion param-

eters (e.g. filenames, write modes). We demonstrate the merging of the data together

with the metadata into a single Nix file using the first two functions (Code Listing 4.4

save_neo_to_nix and save_odml_to_nix). The last two functions deal with the ex-

traction of the corresponding information of the individual components from the Nix

file (Code Listing 4.4 load_odml_from_nix and load_neo_block_from_nix).

With the capability of the Nix format to capture data as well as metadata in a com-

bined fashion both modalities can be comprehensively stored in a common framework.

Integrating both modalities in the Nix format is easy since Neo supports the writing of

data in the Nix format and metadata can be supplemented using the nix-odML-converter .

4.3 Comparison of Neo and NWB:N

The NWB:N format (Teeters et al., 2015) is an alternative approach to Neo for handling

of electrophysiology data. In contrast to Neo it specifies a new file format instead of

providing interfaces to existing formats. More precisely, NWB:N provides a modular

framework for the capture of specific electrophysiology modalities. It is accompanied

by a number of canonical schema (type) for capturing specific types of data, e.g. be-

havioural and time series data, imaging recordings, extra and intracellular electrophys-

iology recordings as well as optogenetic stimulation and optical physiology. Custom

schema can be specified to capture data modalities not covered by the set of canon-

ical schema. This makes the NWB:N format on the one side more generic than the

Neo structure, since it permits the implementation of custom schema specifications,

but on the other side also more restrictive, because existing schema specifications are

very specific and can not be reused in a slightly different context. Also implementation

of a custom schema specification extensions in NWB:N requires additional background

knowledge of the experimenter about the underlying organization of the NWB pack-

age and the time and effort of implementing such a format. For Neo the approach is

different: the underlying object structure is generic to automatically cover most of the

electrophysiology data and the experiment specificity is introduced via the annotation

and array annotation mechanism. This implies that the user only has to understand

21https://github.com/G-Node/nix-odML-converter

85

CHAPTER 4. DATA REPRESENTATION

1 import sys, neo, odml, nixio

2 from nixodmlconverter.convert import nixwrite, get_odml_doc, nix_to_odml_recurse

3

4 def save_neo_to_nix(block, nix_filename, **kwargs):

5 """ save Neo structure in Nix format """

6 io = neo.NixIO(nix_filename, **kwargs)

7 io.write_block(block)

8

9 def save_odml_to_nix(odml_filename, nix_filename, **kwargs):

10 """ save odml tree in Nix format """

11 odml_doc = odml.load(odml_filename)

12 nixwrite(odml_doc, nix_filename, **kwargs)

13

14 def load_odml_from_nix(nix_filename):

15 """ load odml document from nix """

16 with nixio.File.open(nix_filename, nixio.FileMode.ReadOnly) as nix_file:

17 odml_doc, nix_sections = get_odml_doc(nix_file)

18 nix_to_odml_recurse(nix_sections, odml_doc)

19 return odml_doc

20

21 def load_neo_block_from_nix(nix_filename):

22 """ loading neo structure from nix using rawio implementation """

23 io = neo.NixIO(nix_filename)

24 return io.read_block()

25

26 # extracting command line parameters and loading original Blackrock data

27 data_location, odml_filename, nix_filename = sys.argv[1:]

28 io = neo.BlackrockIO(data_location)

29 block = io.read_block(lazy=True)

30

31 # save odml and neo block in single nix file

32 save_neo_to_nix(block, nix_filename, mode='ow')

33 save_odml_to_nix(odml_filename, nix_filename, mode='overwrite metadata')

34

35 # extract odml document and neo block from nix file

36 odml_document = load_odml_from_nix(nix_filename)

37 block2 = load_neo_block_from_nix(nix_filename)

Code Listing 4.4: Saving data and metadata to NIX . Required packages are imported
(line 1f) and four functions for the conversion between Neo and odML on the one side and
Nix on the other side are defined (line 4-24). The main part of the script (line 26ff) first
extract command line specified parameters (location of the dataset and odML and Nix

filenames to be used) and loads the datasets from the Blackrock format. Next, the Neo

block in converted to the Nix format (line 32) and the complete metadata collection
is added from an odML file (line 33). Finally, we demonstrate how to extract the
corresponding information again from the Nix format using the load_odml_from_nix

and load_neo_block_from_nix functions (line 36f). Please note that the execution
time of this code highly depends on the size of the dataset, since for sequentially all
parts the complete dataset will is loaded into memory.

86

4.4. SUMMARY

the Neo objects once and can reuse the knowledge also in different experimental con-

texts. Neo can deal with most of the available electrophysiology file formats and will

be extended to cover calcium imaging data in the future. For NWB:N there are very

limited conversion tools available to convert from specific Matlab structures and cus-

tom formats to the NWB:N format. An interface for the support of additional formats

exists, but format converters are in an early development stage. At this point NWB:N

could benefit from integrating Neo to gain basic support for many electrophysiology

formats. NWB:N has reference implementations in Python as well as Matlab, suiting

most of the neuroscientists, whereas Neo is only implemented in Python, focusing on

non-commercial availability of electrophysiology analysis software.

4.4 Summary

We introduced the Neo Python package designed for standardized and efficient repre-

sentation of electrophysiological data. We presented the development of the package

since the original publication and depicted the main features and flexibility of the pack-

age in three small usage examples. Finally we provide a concise comparison to the

recent NWB:N format and highlight the strengths of the software packages. Using the

Neo package provides a sound foundation for organizing research data according to the

FAIR principles as Neo i) makes data accessible by supporting the conversion from

various file formats to the standardized Neo data representation, ii) is an open, freely

available and software package and iii) it makes data interoperable by providing a for-

mal, accessible and broadly applicable basis for data representation. In addition Neo

is supporting the Nix file format, which is fulfilling additional FAIR principles. These

are i) making the data within the file format findable by using globally unique identi-

fiers for data and metadata objects, ii) permitting the annotation with rich metadata

as extensive metadata collections can be stored, iii) connecting data and metadata in

a formal way by storing links between data and metadata objects, iv) being an open

and free & interoperable framework. Additional aspects of the FAIR principles, like

provenance tracking of the data and metadata, require the embedding of Neo and Nix

in a data and metadata pipeline or workflow.

87

CHAPTER 4. DATA REPRESENTATION

88

Chapter 5

Workflow management

- A new approach for research data

and metadata management

The long process that starts from the generation of data, and ends in a scientific publica-

tion, can be separated into many individual steps. These subdivision may be coarse, like

the separation only of experiment and subsequent analysis. Or they may be very fine,

as each individual operation, and substeps within, may constitute and be implemented

in independent processes.

Workflow management is the concept to organize these individual steps. The gran-

ularity of the steps to manage highly depends on the complexity of the tasks and the

diversity of the processing steps. A common and generic example forming such a work-

flow management system (WMS) is a queuing system used in cluster computing such as

slurm1 or torque2 and maui3. Here users submit a number of, in the simplest case, in-

dependent jobs (computing steps) which are then scheduled and distributed to suitable

compute resources depending on the requested and available resources. This is a simple

example, because the individual processing steps typically do not depend on each other

and only the required amount of resources and time needs to be taken into account when

organizing the execution. Already with these systems, it is possible to implement more

complex scenarios, e.g. by defining an order of execution via dependency statements

for individual jobs.

In this chapter we apply the concept of workflow management to solve the data

and metadata management issues identified in Section 2.6. A systematic workflow

approach for data and metadata management supports the rigorous implementation of

the FAIR principles, since the automation of processing steps relies to some extend on

FAIR principles, i.e data should have a unique identifier and should be organized in a

structured fashion using standardized tools. Additionally, the implementation of a data

and metadata workflow increases the reproducibility of the processing steps, as these are

1slurm workload manager, https://slurm.schedmd.com/
2torque resource manager, http://www.adaptivecomputing.com/products/torque/
3maui cluster scheduler, http://www.adaptivecomputing.com/products/maui/

89

CHAPTER 5. WORKFLOW MANAGEMENT

documented and provenance information can be tracked for each step of the workflow.

Workflow management is suited to tackle the issues we identified in Section 2.6, since it

is designed to coordinate interdependent steps of a process as they occur in the data and

metadata pipeline of the Reach-to-Grasp project. In the following, we present available

WMSs and identify requirements for the applicability in the context of scientific projects

in general as well as for Reach-to-Grasp and similar projects in particular.

For scientific projects like the Reach-to-Grasp experiment described in Chapter 2

there are dependencies between individual steps of the process from data acquisition to

publication (see Figs. 2.4 and 2.6). The workflow management concept has been applied

in a number of scientific fields like genomics or imaging data. In these fields a systematic

approach to data processing and analysis is required and feasible, since they are deal-

ing with large and numerous datasets which exceed manual monitoring or processing

power (e.g. Palm et al., 2010). For these and other disciplines, there are a number of

platforms and tools available to implement pre & post processing as well as analysis

processing steps: Galaxy4, an open, web-based platform providing bioinformatics tools

and services for data intensive genomics research; VisTrails5, an open-source scientific

workflow and provenance management system that provides support for simulations,

data exploration and visualization; Taverna6, a scalable, open source & domain inde-

pendent tool for designing and executing workflows; GenePattern7, a genomics analysis

platform that provides access to hundreds of tools for gene expression analysis, SNP

analysis, flow cytometry, RNA-seq analysis, and common data processing tasks; Renku8,

an online software platform for reproducible and collaborative data science including

workflow management aspects; Terra9, a scalable platform for biomedical research for

data analysis and collaboration; Ugene (Okonechnikov, Golosova, and Fursov, 2012) a

multi platform open-source software for molecular biology; Luigi10, a Python based tool

for building complex pipelines of batch jobs; Airflow 11, a platform to programmati-

cally author, schedule and monitor workflows; pinball12, a scalable workflow manager

with scheduling capability implemented in JavaScript and Python; Make, a basic build

automation tool available since 1976 with multiple implementations (e.g. gnumake13)

and snakemake14, a Python based language and execution environment for make-like

workflows.

In simple and straightforward projects, one may use plain bash scripts to coordinate

the sequential execution of the individual steps of a workflows, mimicking a WMS.

However, once the situation grows more complex, the same issues arise as discussed

for the Reach-to-Grasp metadata pipeline (Section 2.6): the bash script would form a

4Galaxy, https://galaxyproject.org, RRID:SCR_006281
5VisTrails, https://www.vistrails.org, RRID:SCR_006261
6Taverna, https://taverna.incubator.apache.org, RRID:SCR_004437
7GenePattern, http://www.broadinstitute.org/cancer/software/genepattern, RRID:SCR_003201
8Renku, https://datascience.ch/renku
9Terra, https://terra.bio/

10Luigi, https://luigi.readthedocs.io
11Airflow, https://airflow.apache.org/index.html
12pinball, https://github.com/pinterest/pinball
13gnumake, https://www.gnu.org/software/make/
14Snakemake, https://snakemake.readthedocs.io/en/stable/, RRID:SCR_003475

90

monolithic script, trying to cover all possible dependencies between individual scripts

resulting in overly complex code. Additionally, the script could only be executed all at

once, without taking into account which steps of the workflow are actually required due

to updates in the underlying sources files.

Scientific projects, such as the Reach-to-Grasp project presented in Chapter 2, can

benefit greatly from a structured workflow approach. However, the development of the

workflow should in the best case smoothly integrate with the existing scientific tools

and approaches used in the project. In the following, we discuss a number of essential

features of a WMS, which are generally required in scientific projects. The WMS should

be

slim not introduce unnecessary additional computational overhead

easy not require expert knowledge to implement and configure a workflow

standalone not introduce additional unnecessary dependencies to other

projects and programming languages

visual be able to generate a visual overview of the workflow for inspection

and debugging purposes

debuggable be easy to debug

active be actively supported

open be open source and freely available

Furthermore, we identify additional, more specific requirements in the context of the

Reach-to-Grasp and similar projects. Here, the WMS should support

Python inherently support Python as many of the existing scripts are im-

plemented in Python

integration integrate well with existing scripts as the existing code base

should not depend on the WMS.

flexibility provide the flexibility to implement processing steps based on

bash (for usage of external tools, e.g. for spike sorting)

HPC support local workflow execution as well as the usage of compute

clusters by supporting common queuing systems

The general requirements for a slim and standalone WMS with only minimal over-

head already excludes the majority of WMSs listed above as these provide a multitude

of features like web applications that are not required in the context of the scientific

projects presented here. This rules out Galaxy , Renku, Terra as these are web based

WMSs based on a webinterface for user interaction. Ugene and GenePattern focus on

very different domains (molecular biology & genomics, respectively) and provide a mul-

titude of tools for these domains, which are not required here. Pinball and Taverna are

Java based which is not used in the context of the Reach-to-Grasp or related projects.

91

CHAPTER 5. WORKFLOW MANAGEMENT

In addition, Taverna is a highly developed workflow system with 3500 services available,

which surpasses our requirements. Airflow and Luigi are Python-based WMSs that rely

on a custom workflow definition in a Python script, which requires tool-specific knowl-

edge for implementation and maintenance of the workflow. VisTrails is Python based as

well, but relies on a graphical user interface for the workflow definition, thereby mak-

ing the implementation of complex workflows cumbersome. Make is a well established

tool for the organization of build processes and is therefore available on all operating

systems. It has been shown that scientific workflows for quality assurance can be imple-

mented using Make (Askren et al., 2016). However, the workflow definition via make is

laborious as well due to a limited utility functionality. Here, snakemake offers a hybrid

solution of make and Python. The workflow definition is implemented in a make con-

cept, but Python functionality can be used to facilitate the definition of the workflow

within the rigid structure provided by Make. Since Python is already the language

of choice in the Reach-to-Grasp project, snakemake does not introduce any additional

language dependencies and is therefore our tool of choice in order to demonstrate the

usage of WMSs in the context of data and metadata management in scientific projects.

5.1 Workflow management tools - Snakemake

In this section we discuss snakemake as a WMS, as it is domain independent, slim and

easily integrates with Python based projects, e.g. to the Reach-to-Grasp and related

projects (Chapter 2).

Snakemake is a generic workflow management tool derived from the build automation

tool make combined with Python features (Köster and Rahmann, 2012). It is available

as bioconda15 and PyPi package16. We consider the so far latest version 5.5.4 here.

We demonstrate the basic features of snakemake based on two minimal workflow

examples. The first one (Code Listing 5.1) demonstrates the basic concept of make and

the ability of snakemake to define steps in the workflow in which the involved filenames

are not known beforehand. The second, more complex workflow (Code Listing 5.2)

demonstrates the integration of snakemake with Python and showcases its capabilities

of flexibly deducing rule dependencies and parameters of individual workflow steps.

The description of individual steps of a workflow within snakemake is closely related

to Make: A processing step is defined via its input and output files (Code Listing 5.1, line

11 and 12). The core of a rule is the instruction how to generate the output files based

on the input files. Here snakemake offers multiple options based on direct execution of

Python scripts or bash scripting. Bash scripts offer the most flexibility and are marked

with the shell keyword (Code Listing 5.1, line 13). Within executed shell command

references to the input and output files can be used via Python based reformatting of

the command before execution. E.g. in Code Listing 5.1, line 13 the filename specified

by the input of the rule simple_copy_rule (line 11) is automatically copied to the

filename specified by the output of the rule by using {input} and {output} in the

15https://anaconda.org/bioconda/snakemake
16https://pypi.org/project/snakemake

92

5.1. WORKFLOW MANAGEMENT TOOLS - SNAKEMAKE

Snakemake header

1 # define rule order to first use simple rules if possible

2 rule_order:

3 simple_creation_rule > create_file > simple_copy_rule > copy_file

Simple rules

5 # simple rules using explicit file names

6 rule simple_creation_rule:

7 output: 'file.md'

8 shell: 'touch {output}'

9

10 rule simple_copy_rule:

11 input: 'file.md'

12 output: 'file.txt'

13 shell: 'cp {input} {output}'

Flexible rules

15 # flexible rules using wildcards to handle file

names→֒

16 rule create_file:

17 output: '{filename}.txt'

18 shell: 'touch {output}'

19

20 rule copy_file:

21 input: '{filename}.md'

22 output: '{filename}.txt'

23 shell: 'cp {input} {output}'

Code Listing 5.1: Minimal snakemake example workflow. The workflow consists of
two rules: i) generation of a markdown file (.md) and ii) conversion to a text file by
plain copy of the content into a file with .txt extension. Two versions of each rule are
implemented, demonstrating snakemake features at different complexities: The simple
version of the rule handles filenames explicitly (left), whereas the flexible version of the
rule is using wildcards to handle filenames (right). To resolve ambiguities between the
two versions of the rules, we define a rule priority order in the first lines of the snakemake

file.

shell command. The same concept can be used to formulate snakemake rules in a more

flexible fashion. E.g. in Code Listing 5.1 a set of flexible rules is introduced, which use

an additional wildcard {filename} to be able to generate and copy not only files with

filename ’file.md’, but any markdown file. Here, the value of the variable {filename}

is only determined during the execution of the workflow. Therefore, the same rule can

be used multiple times within a workflow with different wildcard parameters. Hereby,

the value of the wildcard is determined recursively by the required output file.

The dependencies between snakemake rules are evaluated based on required files. By

default snakemake uses the first rule within a Snakefile as main rule and tries to execute

this rule. Alternatively snakemake can be called with a filename as an argument. In this

case snakemake attempts to build the requested file based on all available rules, thereby

matching in and output files of rules and checking the availability of basic input files.

For this purpose snakemake generates an acyclic directed graph of rule dependencies

(e.g. see Fig. 5.1) and infers all wildcard parameters from this. In case multiple rules

can be used for generation of the same file a rule priority order can be be defined (Code

Listing 5.1, lines 1-3). Snakemake only executes rules and creates or overwrites files if

the output files of a rule do not exist or the input files have a more recent modification

time stamp than the output files. This guarantees that the output files of a snakemake

workflow are always based on the most recent version of input files and at the same

time minimizes the computational overhead, since only required or outdated files are

generated.

Snakemake rules can be executed in dedicated, containerized environments. For

Python workflows, snakemake supports conda environments on a per-rule level. Here,

93

CHAPTER 5. WORKFLOW MANAGEMENT

Snakefile

1 configfile: 'config.yaml'

2 # extract neo data format to use from

configuration→֒

3 data_format = config['data_format']

4

5 # restrict the data extension to use for

6 wildcard_constraints:

7 data_ext=data_format

8

9 # plot example data in svg and png format

10 rule all:

11 input: expand('data.{ext}',

ext=['png','svg'])→֒

12

13 # run python script to generate data

14 rule create_data:

15 output: 'data.{data_ext}'

16 conda:

'envs/data_generation_environment.yaml'→֒

17 shell: 'python generate_data.py {output}'

18

19 # visualize data

20 rule plot_data:

21 input:

'{{filename}}.{dext}'.format(dext=data_format)→֒

22 output: '{filename}.{ext}'

23 conda: 'envs/plotting_environment.yaml'

24 shell: 'python plot_data.py {input}

{output}'→֒

25

Environments
plotting_environment.yaml

1 name: plotting_environment

2

3 dependencies:

4 - pip

5 - matplotlib

6 - pip:

7 - nixio==1.5.0b3

8 - neo

data_generation_environment.yaml

1 name: data_generation_env

2

3 dependencies:

4 - python=3

5 - numpy

6 - pip

7 - pip:

8 - nixio==1.5.0b3

9 - neo

config.yaml

1 data_format: 'nix'

Code Listing 5.2: Snakemake example workflow for data generation and plotting.
The workflow consists of three rules, for data generation, data visualization and spec-
ification of the all output files of the workflow. The first two rules can be executed in
dedicated conda environments, specified via the conda-directive and are shown on the
right. The workflow uses a configuration file (Snakefile, line 1, config.yaml), specify-
ing the format for storing Neo structures. This specification is also used to provide a
constraint for wildcards with the name data_ext, which resolves ambiguities between
the data generation and visualization rule. The rule all is by default executed when
snakemake is run. It specifies two required output formats of the workflow. For the
visualization of the workflow diagram when running the all rule, see Fig. 5.1.

94

5.1. WORKFLOW MANAGEMENT TOOLS - SNAKEMAKE

A

all

plot_data
ext: png

filename: data

plot_data
ext: svg

filename: data

create_data
data_ext: nix

B

Figure 5.1: Snakemake example workflow for data generation and plotting. The work-
flow diagram (A) and resulting plot (B). The workflow consists of two rules of which the
plot_data rule is executed twice with different parameters to generate the final plot
in two file formats (ext:svg, ex:png, respectively). Different rules are color coded and
the rule name is indicated at the top of each node. The command line parameters of
the scripts are indicated below the rule name. The frame style (solid/dashed) indicates
if this rule needs to be run to generate a final output file. In this example, the data
file was already generated, wherefore snakemake would not rerun this rule unnecessarily
(dashed box). The arrows indicate the dependencies between the rule executions. Rules
at the top need to be executed first, since they generate output files that are required
as input for the subsequent rules executions.

the conda environment can be defined via a yaml file specifying the conda (and PyPi)

dependencies (see Code Listing 5.2 Snakefile, line 16 and 23 and environments). When

no cached version of the environment exists or the yaml environment definition was

updated, snakemake builds the environment using conda.

Code Listing 5.2 demonstrates a more complex workflow using two generic Python

scripts (Code Listing 5.3). The first script generates data based on the Neo package,

whereas the second script visualizes any data accessible via Neo using the Python Mat-

plotlib package. These scripts are implemented to be used as standalone scripts, and

require arguments from the command line indicating the filename. Additionally, they

do not rely on a fixed data file format, but support any format supported by the Neo

framework. This, in combination with the explicit definition of the required conda en-

vironments in form of yaml files makes the scripts highly flexible and generic, such that

they can be easily reused in different contexts and projects. Furthermore, the snakemake

implementation of the workflow keeps the generality of the code by providing flexibility

in the used data format, which is defined via an additional configuration yaml file, and

the usage of wildcards for flexible handling of filenames. The resulting snakemake work-

flow as well as the output visualization of the randomly generated data can be seen in

Fig. 5.1.

In addition to the features demonstrated in the example scripts, snakemake inte-

95

CHAPTER 5. WORKFLOW MANAGEMENT

Data generation
1 import sys, numpy, neo

2 import quantities as pq

3

4 def generate_neo_data():

5 """ Generate Neo block with random data """

6 block = neo.Block(name='generated data

block')→֒

7 segment = \

8 neo.Segment(name='generated data

segment')→֒

9 analogsignal = \

10 neo.AnalogSignal(

11 numpy.random.random(100)*pq.V,

12 sampling_rate=1*pq.kHz,

13 name='numpy random data')

14 block.segments.append(segment)

15 segment.analogsignals.append(analogsignal)

16

17 return block

18

19 def save_neo_block(block, filename):

20 """ Save Neo block to disc at filename"""

21 with neo.get_io(filename) as io:

22 io.write_block(block)

23

24 if __name__=='__main__':

25 filename = sys.argv[1]

26 block = generate_neo_data()

27 save_neo_block(block, filename)

Data visualization

1 import sys, neo

2 import matplotlib.pyplot as plt

3

4 def load_neo_block(filename):

5 """ Load data from file into Neo """

6 with neo.get_io(filename) as io:

7 return io.read_block()

8

9 def plot_analogsignal(block, filename):

10 """ Plot first AnalogSignal of Neo """

11 anasig = block.segments[0].analogsignals[0]

12 plt.plot(anasig.times, anasig.magnitude,

label=anasig.name)→֒

13 plt.xlabel('Time

[{}]'.format(anasig.times.dimensionality.latex))→֒

14 plt.ylabel('Amplitude

[{}]'.format(anasig.dimensionality.latex))→֒

15 plt.legend()

16 plt.savefig(filename)

17

18 if __name__=='__main__':

19 neo_filename, plot_filename = sys.argv[1:]

20 block = load_neo_block(neo_filename)

21 plot_analogsignal(block, plot_filename)

Code Listing 5.3: Standalone Python scripts used in Code Listing 5.2. The two
scripts for data generation and visualization contain generic functions, relying on com-
mand line parameters to provide the arguments for the function calls (lines 21-24 and
lines 18-21, respectively). The data generation is split into two functions, one for
generation of the Neo structure (generate_neo_data) and one for saving the Neo struc-
ture to disk (save_neo_block). The first function generates a Neo Block containing
a single AnalogSignal with randomly generated data (lines 4-12). The second func-
tion receives a generic Neo Block and saves it in the format specified by the provided
filename (lines 16-19). If the script is executed from the command line, the input pa-
rameter filename is extracted from the command line arguments and both functions
are executed consecutively, passing the Neo Block from one function the next (lines 21-
24). The data visualization uses the same concept as the data generation. Here the
two internal functions are loading a Neo block from the specified data source filename
(load_neo_block, lines 4-7) and visualize the first AnalogSignal of a given plot, saving
the result in a requested filename (plot_analogsignal, lines 9-16). Both functions are
called if the script is called from the command line and the two parameters specifying
the data location as well as the output plot filename are extracted from the command
line arguments.

96

5.2. PRACTICAL APPLICATION

grates well distributed storage concepts, such as Google Cloud Storage17, Dropbox18,

or the secure shell protocol (SSH). Remote file sources are declared in the header of

the snakemake file and individual files can be referenced from these sources in the same

manner as local files. Besides access to remote files, snakemake also integrates with

high-performance compute clusters by supporting common queuing systems such as the

slurm workload manager19. Here, a configuration file can be used to specify the cluster

job parameters on a rule-level, permitting detailed resource management.

Summary We presented the application of basic snakemake features based on two ex-

amples demonstrating the modularization of a workflow into individual rules and their

file-based dependency handling. We highlighted the flexibility of this approach by in-

troducing wildcard based filename handling and explained the snakemake dependency

graph. We provided examples of generic standalone Python scripts for seamless inte-

gration into snakemake rules and demonstrated advanced configuration features of the

workflow via additional configuration files and wildcard constraints. We introduced ad-

ditional features for integration of remote files and cluster usage. The presented features

make snakemake our tool of choice for the implementation of scientific workflows, as it

provides a domain-independent and slim option for workflow definition which integrates

well with existing scripted data processing steps.

5.2 Practical application

Snakemake has been applied in a variety of fields and projects. Many of the provided

examples and tutorials are set in the field of genomics20,21. Here we present a workflow

design in the context of the Vision-for-Action project.

5.2.1 The Vision-for-Action project

The Vision-For-Action project builds on top of the Reach-to-Grasp project as it ex-

tends the investigation of motor control only to the interaction of motor and visual

activity. The involved continuous integration of both visual input and motor control

demand a more sophisticated experimental task protocol. The experimental hardware

is a real-time visuomotor behavior and electrophysiology recording (RIVER) setup,

which utilizes a Blackrock system in order to record neuronal activity, as described

for the Reach-to-Grasp experiment (Chapter 2). For more details, we refer to Haan

et al. (2018) and Haan (2018). The recording system additionally encompasses an eye

tracking as well as a hand movement control system and a complex task design, which

includes the sequential pointing to up to six targets. To the current date, only a single

monkey was recorded in the Vision-for-Action setup.

17Google Cloud Storage, https://cloud.google.com/storage/
18Dropbox, https://www.dropbox.com
19slurm, https://slurm.schedmd.com
20https://snakemake.readthedocs.io/en/stable/getting_started/examples.html
21https://snakemake.readthedocs.io/en/stable/tutorial/basics.html

97

CHAPTER 5. WORKFLOW MANAGEMENT

The task In the Vision-for-Action experiment a monkey is positioned in front of a

horizontal, semi-transparent mirror, onto which a white dot corresponding to its hand

position below the mirror, is projected (Fig. 5.2). The monkey is trained to initialize

a task by moving the hand cursor into the area of a central, illuminated target. After

a waiting period of 200ms, during which the monkey has to stay in the center, the

central target is deactivated and, depending on the task type, one or multiple of 6

peripheral targets are illuminated. To receive a reward, the monkey has to deactivate all

illuminated targets by moving the hand cursor into the each of the targets. Depending

on the task additional targets appear upon the deactivation of a previous one. Two

classic task types are currently implemented: The landing task, in which the monkey is

presented a sequence of three peripheral targets, which he has to deactivate by staying

in each of the targets for 100ms resulting in mostly straight hand movements to the

target. In the drawing task, the monkey is presented multiple targets at once and can

chose an order and route to deactivate these. In this task type the monkey only needs

to touch the target with the hand cursor. It was observed that this typically causes

very curved hand movement trajectories.

The setup The RIVER setup consists of three components recording different modal-

ities: i) the neural activity via a Blackrock system described in the context of the Reach-

to-Grasp experiment ii) the eye movement via a an EyeLink tracking system and iii)

the arm movement via a Kinarm motorized exoskeleton (Fig. 5.2).

As in the Reach-to-Grasp experiment, neural activity is recorded using a Utah array

recording device. In the Vision-for-Action experiment, however, additional to a single

Utah array implanted in motor cortex, four smaller arrays are implanted in visual cortex.

96 active recording electrodes are present in motor cortical area M1 and premotor cortex.

Furthermore, 32 active electrodes, arranged in a 6 × 6 grid, are located in each of the

vision-related cortical areas V1, V2, 7a and DP. The neural activity is recorded by

two parallel setups (see Fig. 5.2 purple boxes). This includes two separate connectors

implanted contralateral to the Utah arrays and ipsilateral to the active hand of the

monkey. Each of the two connectors is connected to a separate headstage including a

neural signal amplifier, digitizer and converter. The signals of each headstage are then

optically transmitted to one of two real-time Neural Signal Processors (NSPs) which

perform online signal processing (filtering, spike extraction and sorting). In the next

step, the processed neuronal signals of each NSP are transmitted to a corresponding

offline Cerebus computer for writing to disk and monitoring by the experimenter.

The active arm of the monkey is attached to a Kinarm system, which can be used

to track and interfere with the monkey’s movement (Fig. 5.2 green boxes). The Kinarm

restricts the hand movement to a horizontal plane below the working space of the

monkey and can be used to exert forces onto the monkey’s arm. Online feedback of

the hand location is provided visually in form of a circular white cursor in the working

space.

The gaze position of the monkey is tracked using an EyeLink system (Fig. 5.2, blue

boxes). To be able to record the gaze position, the monkey’s head is placed in a plastic

98

5.2. PRACTICAL APPLICATION

head mask, restricting large head movements and providing access to the reward system.

The gaze direction is inferred from a video signal that shows the position of the pupil and

the corneal reflection of an infrared light source. The raw eye signal is processed online

into the final eye position sin gal through the Kinarm real-time system. This conversion

depends on the exact location of the monkey’s eye with respect to the camera and light

source and therefore needs to be calibrated frequently to ensure a stable gaze position

recording. For a detailed description of the configuration mechanism and procedure,

see Haan et al. (2018).

All online tracked signals, neuronal, Kinarm as well as gaze, are input to at least

one of the two NSPs. This results in two sets of Blackrock files as original data files

generated by the RIVER setup.

The experiment control is implemented as a Simulink model on the Kinarm real-

time computer. This model coordinates the experiment using a Stateflow description of

the experimental task and by generating corresponding event codes encoding the state

of the system. The event codes are unique and globally defined in a generic manner

using a 16 bit code. Of the 65536 possible codes, 1246 codes are reserved for generic

experimental events like a trial start or the beginning of a trial metadata sequence.

This leaves 64290 unused codes, providing sufficient flexibility for future extensions

of the scheme. Each event code can contain metadata further specifying properties

of a specific event, e.g. the maximum time range the monkey has to reach the next

target before the trial is aborted. For robustness, all event codes come in pairs of

two, bracketing the metadata information in a start and end bracket. The globally

defined experimental codes follow a systematic scheme grouping events based on their

first digit in six categories: ’Experiment Metadata’, ’Trial Metadata’, ’Screen Related’,

’Exoskeleton Related’, ’Other’, ’Behaviour Related’ and ’Error’. For more details on

the global encoding of metadata see Haan (2018). For a specific task implementation

used in the experiment, a mapping of the globally defined codes to the task specific

metadata is defined. This approach permits the global use of generic event codes in the

recorded data which at the same time is capable of capturing all task specific metadata.

The global event codes generated by the Simulink model, together with hand and gaze

location information, are forwarded to the Blackrock system and saved together with

the neuronal signals.

Synchronization It is essential for the interpretation of the data and their coherent

recording from three different systems that these share a common time frame. The

RIVER setup produces two sets of Blackrock files since all other signals are integrated

online during the recording. The two NSPs provide a feature, which permits to syn-

chronize the two systems upon start. To ensure continued synchrony between the two

systems, the two NSPs receive common input from the Kinarm system, which can be

used offline for validating the common recording time frame.

Data and metadata files The RIVER setup saves multiple signals in parallel, as

described in the following. Two sets of Blackrock data files are recorded: one containing

99

CHAPTER 5. WORKFLOW MANAGEMENT

file format content

*.ccf cerebus configuration
*.nev digital events

• unsorted spike times
• spike waveforms
• experiment metadata
• trial metadata
• screen events
• exoskeleton events
• behavioural events
• errors
• ...

*.ns2 continuous signals with 1kHz sampling rate
• eye (gaze) position
• hand position
• target position
• elbow position
• joint angles / velocities / accelerations
• synchronization pulses

*.n6 continuous signals with 1kHz sampling rate
• neuronal signals

Table 5.1: Recording file formats and content in the Vision-for-Action project. The
cerebus configuration is saved in a custom Blackrock configuration format. The nev
format contains digital events generated by the NSP based on the neuronal activity
(spike detection) and all integrated events received from additional hardware systems,
e.g. the Simulink model. Continuous signals are stored in different files depending on
the sampling resolution. At a low sampling resolution of 1kHz the ns2 signal contains
behavioral signals whereas the neuronal high sampling resolution signals are stored in
the ns6 file.

neural signals from motor and the other from visual cortical areas in the ns6 format.

In addition, both datasets contain partially identical behavioral signals for the hand,

arm and gaze position in the ns2 format (Table 5.1). Furthermore, the position of the

active target is stored with a 1kHz sampling rate as well as the synchronization signals

which are shared between the two NSP / Cerebus systems.

As for the Reach-to-Grasp experiment, the nev file contains online extracted spikes,

but in addition it also captures a large amount of structured metadata in form of events,

which encode experimental metadata as outlined above. These metadata are comple-

mented by a set of metadata descriptors. These are text files in csv format, structured

in an odMLtables compatible fashion. The files are generated by the experimenter in a

manual fashion using Matlab routines for generation of repetitive data. The content of

these files contains a structure for metadata branches that can be merged and integrated

in an hierarchical odML metadata collection. A complete set of descriptor files encom-

passes 9 csv files and covers all metadata not captured in the event recording file. These

csv files store essential metadata about the monkey, the hardware components used, the

global and specific codes used in the session, the signal flow for digital and analog sig-

100

5.2. PRACTICAL APPLICATION

F
ig

u
re

5
.2

:
T

he
R

IV
E

R
se

tu
p

in
cl

ud
in

g
sc

he
m

at
ic

of
ha

rd
w

ar
e

co
m

p
on

en
ts

an
d

si
gn

al
flo

w
s.

D
ep

ic
te

d
ar

e
th

e
m

on
ke

y
ta

sk
se

tu
p

(t
op

ri
gh

t)
,
th

e
re

co
rd

in
g

sy
st

em
an

d
si

gn
al

flo
w

s
(b

ot
to

m
le

ft
),

th
e

m
on

ke
y

ch
ai

r
an

d
K

in
ar

m
(t

op
ri

gh
t)

an
d

th
e

re
co

rd
in

g
ha

rd
w

ar
e

ra
ck

(b
ot

to
m

ri
gh

t)
.

F
ig

ur
e

fr
om

H
aa

n
(2

01
8)

.

101

CHAPTER 5. WORKFLOW MANAGEMENT

Descriptor Content Generation

session • session name once per session
• relevant metadata files semi-automatic
• task type visual cross check
• ...

subject • species onetime, static
• active hand
• training
• ...

Kinarm • hardware specifications onetime, static
• programming software
• ...

eyelink • hardware specifications onetime, static
• software specifications
• ...

blackrock • Utah arrays onetime, static
• connectors
• physical properties
• ...

analog_communication • hardware specifications onetime, static
• pin mapping
• ...

digital_communication • hardware specifications onetime, static
• pin mapping
• ...

codes_global • code mapping & definition onetime, static
codes_task • mapping of global codes to once per task type

task specific metadata static

Additional metadata files

task description (pdf)
extensive human readable task description
with sketches

once per task,
static

task model (mdl) model description file as used by Simulink
once per task,
static

task parameter file (dtp) task parameter file as used by Simulink
once per task,
static

target picture (png) image used for visual targets onetime
calibration parameters (mat) parameters of the calibration model onetime
calibration data (mat) data used for calibration once per calibration

Table 5.2: Metadata descriptors and supplementary files in the Vision-for-Action
project. Nine csv descriptor files are required for a complete description of the ex-
periment. Most of these only need to be generated once as the data contained within
is constant across consecutive recording sessions. Only the session descriptor needs to
be adjusted to each session. There are six additional files which provide supplemental
metadata information, e.g. additional configuration and image material used during the
recording.

nals in the recording setups and the general description of the recording session as well

as meta information about all required descriptor files (Table 5.2 top). Additionally,

configuration and supplemental files that can not be captured in a csv file but are used

during the recording are referenced in the session descriptor. On the one hand, most of

the metadata files are expected to be identical for all sessions. Some on the other hand

change with the task type, while only a few need to be generated / tracked explicitly

for each session. Nevertheless, since during the life time of an experiment unforeseen

changes might occur, such as the replacement of a part of the setup due to malfunction,

it is better practice to record all metadata files anew in each session regardless of prior

expectations. We also followed this approach in this specific experiment.

102

5.3. METADATA WORKFLOW IN THE VISION-FOR-ACTION PROJECT

5.3 Metadata workflow in the Vision-for-Action project

Based on the metadata source files described in Table 5.2 (descriptors, in addition to a

number of supplemental and binary data files) we designed a workflow for metadata col-

lection and enrichment which consists of processing steps that can be classified into five

processing categories (Fig. 5.3). In the following, we present concepts and implementa-

tions developed for in the context of Vision-for-Action. We design the workflow using

snakemake in combination with Python scripts, which are implemented in a standalone

fashion as described in Section 5.1 (Code Listing 5.3). In the context of this workflow

we term these standalone Python scripts ’application’ (app). Each app performs only

a single, designated processing step based on as few input files as possible, to avoid

unnecessary dependencies and provide a processing workflow that is easy to follow.

Grouping of apps We separated apps into groups according to the similarity of

their interfaces, i.e. the input parameters the app requires and the type of output it

generates. This way a single rule can handle multiple apps in case they have a similar

dependency structure and require the same parameters. An example for a group of app

with the same interface are metadata apps, coordinated by the run_metadata_app rule

(Fig. 5.3, green box). This rule covers all apps, which generate metadata based on the

original recording data and generate an odMLtables compatible csv file summarizing the

extracted metadata or processing results. These apps require as input parameters the

location of the original data files to be loaded as well as the location to which to write

the resulting csv file. In contrast to this data_apps extend the original data (in the

Neo representation) and generate an odMLtables compatible csv file. Each generated

csv file is saved with an app-specific filename and typically contains only a few values

of additional metadata, since apps are modularized to cover very specific tasks. In the

current workflow, metadata and data apps are implemented in a flexible manner, as

these apps are located in a dedicated folder. All apps in these folders are automatically

included in the workflow and are executed by the run_metadata_app and run_data_app

rules (Code Listing 5.4).

Two minimal examples depicting two subsets of the workflow are shown in Fig. 5.4.

Here we focus on the integration of the original csv descriptors into a single odML file

as well as the execution of preprocessing steps (Fig. 5.4A and B, respectively). The

general dependencies between the corresponding rules are visible in Fig. 5.3, whereas

the executions of the rule with varying parameters during a run of snakemake are de-

picted in Fig. 5.4. I.e. the two rules handling data and metadata apps (Fig. 5.3,

green boxes) each cover a multitude of data and metadata apps. Examples of the

apps run by these two rules are depicted in (Fig. 5.4B), e.g. the run_data_app rule

executes the apps app_synchrofact_detection, app_cross_talk_detection_in_ns6

and app_saccade_detection all with the same set of parameters. The large number of

apps handled by some of the rules prevents a visualization of the complete workflow in

this context, hence only a small selection of apps is depicted Fig. 5.4.

In the first example, covering the merge of descriptors, first all csv descriptors need

103

CHAPTER 5. WORKFLOW MANAGEMENT

upload_to_gin

create_smallinitialize_repo

setup_gin

create_full

integrate_descriptors_and_app_results

integrate_metadata

link_metadata

integrate_app_results integrate_descriptors

data_to_nix

run_data_app

csv_to_odmlrun_all_preprocessing_apps

add_odML_style_sheetrun_metadata_app copy_descriptors

aggregate metadata

utility rules

package data

preprocess data

version & deploy

Figure 5.3: Metadata workflow rules for Vision-for-Action experiment. Visualized are
only the general dependencies between rules irrespective of the input parameters and
multiple executions during the run of the workflow. Data are preprocessed (green boxes)
and secondary metadata are extracted. These are together with the primary metadata
combined in a single metadata collection (blue boxes). Data are converted to the Nix

format and packaged together with the metadata in a single file (purple boxes). The
resulting files are then put under version control using gin and uploaded to a central
server (yellow boxes).

104

5.3. METADATA WORKFLOW IN THE VISION-FOR-ACTION PROJECT

A

in
te

g
ra

te
_

d
e
sc

ri
p
to

rs
se

ss
io

n
:

y
1
8
0
1
1
6
-l
a
n
d
-0

0
1

c
sv

_
to

_
o
d
m

l
fi
le

n
a
m

e
:

d
e
sc

ri
p
to

r_
k
in

a
rm

fo
ld

e
r:

/̃
y
1
8
0
1
1
6
-l
a
n
d
-0

0
1
/
d
e
sc

ri
p
to

rs

c
sv

_
to

_
o
d
m

l
fi
le

n
a
m

e
:

d
e
sc

ri
p
to

r_
su

b
je

c
t

fo
ld

e
r:

/̃
y
1
8
0
1
1
6
-l
a
n
d
-0

0
1
/
d
e
sc

ri
p
to

rs

c
sv

_
to

_
o
d
m

l
fi
le

n
a
m

e
:

d
e
sc

ri
p
to

r_
a
n
a
lo

g
_

c
o
m

m
u
n
ic

a
ti
o
n

fo
ld

e
r:

/̃
y
1
8
0
1
1
6
-l
a
n
d
-0

0
1
/
d
e
sc

ri
p
to

rs

c
sv

_
to

_
o
d
m

l
fi
le

n
a
m

e
:

d
e
sc

ri
p
to

r_
d
ig

it
a
l_

c
o
m

m
u
n
ic

a
ti

o
n

fo
ld

e
r:

/̃
y
1
8
0
1
1
6
-l
a
n
d
-0

0
1
/
d
e
sc

ri
p
to

rs
..
.

a
d
d
_

o
d
M

L
_

st
y
le

_
sh

e
e
t

fo
ld

e
r:

/̃
y
1
8
0
1
1
6
-l
a
n
d
-0

0
1
/
d
e
sc

ri
p
to

rs
/
o
d
M

L
s

c
o
p
y
_

d
e
sc

ri
p
to

rs
d
e
sc

ri
p
to

r:
d
e
sc

ri
p
to

r_
k
in

a
rm

se
ss

io
n
:

y
1
8
0
1
1
6
-l
a
n
d
-0

0
1

c
o
p
y
_

d
e
sc

ri
p
to

rs
d
e
sc

ri
p
to

r:
d
e
sc

ri
p
to

r_
su

b
je

c
t

se
ss

io
n
:

y
1
8
0
1
1
6
-l
a
n
d
-0

0
1

c
o
p
y
_

d
e
sc

ri
p
to

rs
d
e
sc

ri
p
to

r:
d
e
sc

ri
p
to

r_
a
n
a
lo

g
_

c
o
m

m
u
n
ic

a
ti

o
n

se
ss

io
n
:

y
1
8
0
1
1
6
-l
a
n
d
-0

0
1

c
o
p
y
_

d
e
sc

ri
p
to

rs
d
e
sc

ri
p
to

r:
d
e
sc

ri
p
to

r_
d
ig

it
a
l_

c
o
m

m
u
n
ic

a
ti

o
n

se
ss

io
n
:

y
1
8
0
1
1
6
-l
a
n
d
-0

0
1

..
.

B

ru
n
_

d
a
ta

_
a
p
p

ru
n
_

a
ll
_

p
re

p
ro

c
e
ss

in
g
_

a
p
p
s

ru
n
_

d
a
ta

_
a
p
p

a
p
p
:

a
p
p
_

sy
n
ch

ro
fa

c
t_

d
e
te

c
ti

o
n

ru
n
_

m
e
ta

d
a
ta

_
a
p
p

a
p
p
:

a
p
p
_

is
_

se
ss

io
n
_

so
rt

e
d

se
ss

io
n
:

y
1
8
0
1
1
6
-l
a
n
d
-0

0
1

ru
n
_

m
e
ta

d
a
ta

_
a
p
p

a
p
p
:<

a
p
p
li
c
a
ti

o
n
>

se
ss

io
n
:

y
1
8
0
1
1
6
-l
a
n
d
-0

0
1

ru
n
_

m
e
ta

d
a
ta

_
a
p
p

a
p
p
:

a
p
p
_

o
v
e
rv

ie
w

_
p
lo

t
se

ss
io

n
:

y
1
8
0
1
1
6
-l
a
n
d
-0

0
1

a
p
p
:

a
p
p
_

c
ro

ss
_

ta
lk

_
d
e
te

c
ti

o
n
_

in
_

n
s6

ru
n
_

m
e
ta

d
a
ta

_
a
p
p

a
p
p
:

a
p
p
_

e
v
e
n
t_

ch
e
ck

se
ss

io
n
:

y
1
8
0
1
1
6
-l
a
n
d
-0

0
1

a
p
p
:

a
p
p
_

sa
c
c
a
d
e
_

d
e
te

c
ti

o
n

d
a
ta

_
to

_
n
ix

se
ss

io
n
:

y
1
8
0
1
1
6
-l
a
n
d
-0

0
1

ru
n
_

d
a
ta

_
a
p
p

a
p
p
:<

a
p
p
li
c
a
t
io

n
>

ru
n
_

d
a
ta

_
a
p
p

F
ig

u
re

5
.4

:
T
w

o
ex

am
pl

e
m

et
ad

at
a

w
or

kfl
ow

st
ep

s
in

th
e

V
is

io
n-

fo
r-

A
ct

io
n

pr
oj

ec
t.

A
)

In
te

gr
at

io
n

of
or

ig
in

al
c
s
v

de
sc

ri
pt

or
s

in
to

a
si

ng
le

o
d
M

L

fil
e

by
re

p
ea

te
d

ap
pl

ic
at

io
n

of
th

e
c
o
p
y
_
d
e
s
c
r
i
p
t
o
r
s

an
d
c
s
v
_
t
o
_
o
d
m
l

ru
le

.
E

ac
h

ap
pl

ic
at

io
n

is
sp

ec
ifi

c
fo

r
a

si
ng

le
de

sc
ri

pt
or

an
d

re
su

lt
in

g
o
d
M

L

fil
es

ar
e

m
er

ge
d

vi
a

th
e
i
n
t
e
g
r
a
t
e
_
d
e
s
c
r
i
p
t
o
r
s

ru
le

.
A

st
yl

e
sh

ee
t

is
au

to
m

at
ic

al
ly

do
w

nl
oa

de
d

fo
r

ea
sy

vi
su

al
iz

at
io

n
of

th
e

ge
ne

ra
te

d
o
d
M

L

fil
es

.
B

)
P

re
pr

oc
es

si
ng

an
d

m
et

ad
at

a
ex

tr
ac

ti
on

vi
a

re
p
ea

te
d

ap
pl

ic
at

io
n

of
th

e
r
u
n
_
d
a
t
a
_
a
p
p

an
d
r
u
n
_
m
e
t
a
d
a
t
a
_
a
p
p

ru
le

.
B

ot
h

ru
le

s
ha

ve
si

m
ila

r
pa

ra
m

et
er

se
ts

,
bu

t
r
u
n
_
d
a
t
a
_
a
p
p

ad
di

ti
on

al
ly

de
p
en

ds
on

an
ex

te
nd

ab
le

ve
rs

io
n

of
th

e
or

ig
in

al
re

co
rd

in
g

da
ta

st
ru

ct
ur

e,
w

hi
ch

is
ge

ne
ra

te
d

by
th

e
d
a
t
a
_
t
o
_
n
i
x

ru
le

.
T

he
ru

le
s

ta
ke

as
pa

ra
m

et
er

th
e

ap
p

to
ru

n
an

d
th

e
re

co
rd

in
g

se
ss

io
n.

A
ll

ru
le

s
ab

ov
e

ar
e

tr
ig

ge
re

d
by

a
ut

ili
ty

ru
le

re
qu

ir
in

g
th

e
ou

tp
ut

fil
es

of
al

l
pr

ep
ro

ce
ss

in
g

ap
ps

as
in

pu
t.

105

CHAPTER 5. WORKFLOW MANAGEMENT

149 rule run_metadata_app:

150 input:

151 script = 'scripts/metadata_apps/{app}.py',

152 original_data = join(DATALOC, '{session}'),

153 utils = UTILDIR,

154 output:

155 join(OUTPUTLOC, '{session}', 'app_stats', '{app}.done'),

156 csv_path = join(OUTPUTLOC, '{session}', 'app_results', 'csv', '{app}.csv')

157 conda:

158 'envs/metadata_env.yaml'

159 shell:

160 '''

161 export PYTHONPATH={input.utils}

162 python {input.script} {input.original_data} {output.csv_path}

163 touch {output}

164 '''

Code Listing 5.4: Excerpt of the snakemake workflow definition for the Vision-
for-Action project. The run_metadata_app rule requires all apps located in the
metadata_app subfolder as well as the locations of the original dataset and the util-
ity functions for this workflow. It generates a .done file with an app specific name for
housekeeping purposes as well as a csv file containing the extracted metadata. The
execution environment is defined via a conda environment. The rule executes three
lines of bash code for making the utility functions available, running the app with the
specific parameters and generating / updating the housekeeping .done file. The vari-
ables DATALOC, OUTPUTLOC and UTILDIR are fixed path locations within the snakemake

workflow and either defined via the configuration or are set at the beginning of the
workflow description.

to be copied to the working directory of the workflow as the descriptors are stored to-

gether with the original data in a read-only folder. This prevents unintentional changes

of the original data and makes the workflow less error-prone. Each descriptor file is

copied by the copy_descriptors rule whereas the descriptor identity is defined as pa-

rameter. These copies serve as an input for the csv_to_odml rule, which permits the

conversion of any odMLtables compatible csv file to the odML format. This step is

also run for all descriptors separately. In addition the csv_to_odml rule also requires

an odML style sheet for the user friendly visualization of the odML file via html. This

is a required input file for all realizations of the copy_to_csv rule and is downloaded

once to the descriptor working directory via the add_odML_style_sheet rule. Finally,

the integrate_descriptors rule uses all previously created odML files as input and

integrates all odML files into a common odML file.

In the second example, two types of preprocessing steps are performed: preprocess-

ing and metadata extraction with and without modification or extension of the neuronal

data set. Apps that only access the original neuronal data to extract metadata (e.g.

data integrity checks) are coordinated by the run_metadata_app and access the neu-

ronal data in the original Blackrock format. Preprocessing steps that extend the original

neuronal dataset (e.g. by performing spike sorting) are handled by the run_data_app

rule and require a data representation in the generic, open source Nix format (see Sec-

tion 4.2.3), to be able to successively extend the dataset. The initial conversion from

the Blackrock to the Nix format is performed by the data_to_nix rule. Here, the order

of execution of the data apps is not specified in the snakemake workflow as there are no

106

5.3. METADATA WORKFLOW IN THE VISION-FOR-ACTION PROJECT

dependencies between the different runs of the run_data_app rule. Hence the order of

execution depends on the snakemake run and is not predetermined. This means only

independent data processing steps can be implemented with this mechanism as no fixed

order is guaranteed. Future extensions adding interdependent preprocessing steps can

be added as additional rules in the snakemake workflow by assigning the new rules with

a higher rule priority order than the run_data_app rule (see Code Listing 5.1, line 1-3)

and introducing additional, explicit dependencies to other rules.

Currently, metadata apps cover aspects of data quality assurance as well as extrac-

tion of essential information for easy access. Some examples for data quality assurance

apps are listed below:

• check for the existence of all recording files

• check for the integrity of events recorded with both NSP systems. This ensures

synchronicity of the datasets between the two independent Blackrock recording

systems.

• check for integrity of online extracted spikes and continuously sampled raw data.

In case of a silent data packet loss during the recording, online extracted spike

times and continuous data are not aligned from the time point of data loss (see also

Section 2.6). The occurrence of a gap can be automatically detected with a high

probability by comparing online generated spiking event times to the continuous

recording signal at high sampling rate.

Examples for apps for the automatic extraction of basic metadata are:

• the collection of all channel specific information in a channel-specific odML Section.

• the evaluation whether a session was offline spike sorted

• the evaluation of the monkey’s performance (total number of trials, number of

correct trials)

• the creation of overview plots of

– the raw recorded data for the purpose of visual inspection

– detected hyper-synchronous events in the spiking data and their complexity

distribution (see Appendix D.4)

In contrast to metadata apps, data apps extend the Neo data structure. Some

examples of implemented and envisioned data apps are:

• the detection of cross talk between individual electrodes and annotation of the

corresponding recording traces

• the detection and annotation of hyper-synchronous events in spiking data (see

Appendix D.4)

• the extraction of events from continuous recording signals such as

– the extraction of saccades from the eye (gaze) position

– the segmentation of the hand movement into sub-trajectories

107

CHAPTER 5. WORKFLOW MANAGEMENT

Code and data folder structure The workflow project is organized in the following

structure:

workflow folder . workflow repository folder
Snakefile . definition of snakemake workflow
config.yaml . configuration of snakemake workflow
config_template.yaml . template for setting up config.yaml
envs

metadata_env.yaml contains conda Python environment definition
scripts . contains Python scripts coordinated by snakemake

data_apps . contains modifying/extending data apps
metadata_apps . contains aggregating metadata apps
infrastructure . contains general purpose apps
utilities

util.py . contains utility functions used by apps
tests. .contains test suite for apps
app_example.py . template implementation of an app

The separation of different types of apps into subfolders permits to automatically

collect data and metadata applications during the runtime of the snakemake workflow.

This avoids hard coding of app names in the workflow definition and provides a more

flexible approach that minimizes the need for the user to customize the Snakefile. Within

the snakemake workflow, different paths need to be configured via the config.yaml: i)

the location of the original data files, typically only with read access, ii) the output lo-

cation of the workflow, iii) potentially the server repository the results will be uploaded

to. In addition to this, the configuration file can be used to specify a set of recording

sessions to run the workflow on. Otherwise all available data folders will be used by

default. Within the snakemake workflow, multiple folders are used to separate data and

metadata at different levels of processing:

<session> . session specific data and metadata workflow folder
<session>_original.nix data as contained in Blackrock files descriptors
<session>.nix . processed and extended data and metadata
<session>_small.nix slim version of the <session>.nix file (no raw data)
metadata_complete.odml metadata from descriptors and preprocessing
app_results . contains metadata output from preprocessing

preprocessing_integrated.odmlall metadata from preprocessing
csvs. .contains csvs generated by preprocessing steps
odMLs . contains csvs converted to odML format

app_stats contains files indicating the execution status of apps
descriptors . contains descriptor processing steps

csvs . contains data related to csv descriptors
odMLs contains csv descriptors converted to odML format

descriptor_session_integrated.odml all descriptor metadata

108

5.3. METADATA WORKFLOW IN THE VISION-FOR-ACTION PROJECT

Metadata aggregation (data & metadata apps) Primary, initial metadata are

available as odMLtables compatible csv descriptors. Secondary, automatically extracted

metadata are generated in the same format by a number of preprocessing steps imple-

mented as metadata and data apps (Fig. 5.3 green boxes). Both sets of csv files are

converted into the odML format using the generic csv_to_odml rule which is based on

odMLtables. In a two level approach, first metadata information originating from de-

scriptors and preprocessing steps are each merged into single odML files. In a second

step, these are integrated into the complete metadata collection for the given recording

session (Fig. 5.3, blue boxes).

Data packaging The original data are stored in a Blackrock binary data format,

which is optimized for the recording of large data streams. To access, analyze and

modify/extend the data we use the open-source Nix format which is based on the hdf5

standard and offers a direct interface to the Python Neo package. Hence, all data

processing and extension apps are based on a data representation in the Nix format,

which is generated by the data_to_nix rule (Fig. 5.3). This representation is then firstly

extended by a number of data preprocessing apps (run_data_app rule) and secondly

merged with the complete metadata collection (integrate_metadata rule). Next, links

between the data and metadata within the Nix file are established, connecting Neo

objects to the corresponding sections of the metadata collection (link_metadata). To

provide appropriately sized packaged data for different analysis purposes, we define two

flavours of Nix files: a full flavour, containing the complete dataset and a small flavour

containing only memory friendly spiking activity and metadata.

Versioning & deployment We envision the automatic tracking of final metadata

and data files generated by the presented workflow using a version control system capa-

ble of handling large data files (Fig. 5.3, orange rules). We investigate the integration

with Gin web service for hosting data, since it is based on the common versioning

software stacks git22 and git-annex23. This requires the configuration of a local and

optionally remote repository including access right handling. Automatic versioning and

remote hosting of results from the snakemake workflow guarantees the consistency of

datasets across time. Additionally, the snakemake workflow itself can also be tracked

in the same repository, assuring a direct link between the workflow result and the con-

tributing source code. Another advantage of hosting the packaged data files remotely is

the central storage, providing a single reference location for all scientists working with

the data. At the same time the version control system permits easy and clear communi-

cation about the data and the up-to-dateness is ensured via the automatic registration

of results from the snakemake execution. We found that for a one directional interaction

in which snakemake is only adding results to the repository, the integration of the two

systems works smoothly. Potential problems occur in cases when the version control

system is used to check out files which act as input files to any rule in the workflow.

22git, https://git-scm.com
23git-annex, https://git-annex.branchable.com/

109

CHAPTER 5. WORKFLOW MANAGEMENT

Here, the modification time stamp of the file is not conserved between registration in

the version control system and the time point of check out. However, since snakemake

relies on consistent modification timestamps of files for the status of the workflow, this

can lead to inconsistencies in the workflow management.

Validation Modularization of the individual processing steps into apps permits the

implementation of validation routines to ensure correct functionality of the code. Since

in this experiment the apps are Python based, tests can be implemented e.g. via the

unittest24 framework. Combining this concept with a versioned data repository, such

tests could be integrated with one of the available continuous integration systems (see

Section 2.7.1), which automatically trigger validation routines on each code update.

5.3.1 Discussion

Based on the concepts we described above, we implemented a prototype of the data

processing workflow. Here, we discuss the individual features exhibited by this approach

and contrast it to the workflow implemented for the Reach-to-Grasp project (Chapter 2).

Efficiency & reliability By implementing the workflow in snakemake, inherently

only those workflow steps are executed for which updated input files exist. This reduces

the amount of overhead and execution time in comparison to a non-modular, scripted,

rigid workflow for which all steps can only be executed at once without taking into

account intermediate results. At the same time using snakemake for determining which

steps need to be re-executed is a much more reliable approach in comparison to manual

evaluation of the up-to-dateness of intermediate results and initialization subsequent

processing steps.

Flexibility & usability Already during the early development and installation of

the workflow, output files can be generated (e.g. the complete metadata collection in

odML format or the recording data in Nix format) even if they do not yet contain all

information. These preliminary output files will grow proportional to the information

contained by the continued extension of the workflow definition. This permits to provide

output files to the collaboration community according to the software development

philosophy ’Release early, release often’ (Martin, 2008) already at early implementation

stages. At the same time the modular structure and simple definition of the workflow

in a snakemake file permit a flexible extension of the procedure also at later time points

during the production, e.g. when a new method for data quality estimation is developed

and should be applied to all previously recorded sessions. In simple cases this can

be achieved by adding an new app to the data or metadata apps folder, which will

be automatically considered in the next workflow run, thus making maintenance of

the workflow easy. For more complex changes, which require additional steps in the

24unittest, https://docs.python.org/3.7/library/unittest.html

110

5.3. METADATA WORKFLOW IN THE VISION-FOR-ACTION PROJECT

workflow process, new rules can be added, which will be automatically integrated based

on their input and output file dependencies.

Reusability The presented workflow rules and apps can be grouped into two cate-

gories: Those which do require some knowledge about specific aspects of the project

and those which only require general information about file formats and generic tools.

An example for the first group is the app linking between the data and the metadata

part within a Nix file (Fig. 5.3, link_metadata rule). This rule requires information

about the data structure and its interpretation as well as about the metadata originat-

ing from the odML file to be able to draw semantically useful links between the two.

Another example are the various metadata apps, which need to be able to identify the

relevant information in the source data files to interpret and extract this into a csv

file. On the other hand, other apps and rules are generic. For example, the conversion

from csv to the odML format does not require information about the actual file con-

tent. Other examples for generic rules are the integration of multiple odML files into a

single file (integrate_descriptors_and_app_results rule), the integration of odML

into Nix (integrate_metadata rule) or the setup of the gin repository. Thus a large

amount of apps can be reused across projects, lowering both effort and cost of setting up

data management workflows and making processed datasets more similar from different

experiments.

Robustness Robustness of the workflow is strengthened in the modularity of the

snakemake rules: In case one of the rules fails to produce the expected output files, e.g.

by encountering invalid or unexpected data, snakemake keeps intermediate files. This

permits to generate output files under erroneous conditions without explicitly handling

all possible exceptions in the individual apps.

Outlook We plan to extend the existing workflow at multiple points. Firstly, on the

side of data and metadata apps, there are a number of steps for preprocessing and

information extraction which would simplify data selection for later analysis. This in-

cludes for example the definition of trials already in the preprocessing stage to provide

a unified trial framework for all collaborators. Similarly, the calculation of common

measures of spike train statistics can be performed at that stage and shared between

scientists. Additional approaches for data quality assurance are the automatic detec-

tion of noise in raw signals and the detection of cross talk between electrodes using a

coherency approach. Furthermore, additional metadata not covered by descriptors can

be extracted from supplementary files and be added to the metadata collection. A more

ambitious, but realistic extension would be to introduce an additional, automatic spike

sorting based on the raw recording traces, which can be evaluated against the spike

sorting version if manual sorting was performed for the specific session.

Secondly, in case of sequential dependencies between the extensions discussed above,

additional, explicit rules for handling these need to be added in the workflow and a rule

111

CHAPTER 5. WORKFLOW MANAGEMENT

order needs to be defined for the disambiguation of the new and existing data and

metadata rules.

Thirdly, the separation of generic from experiment specific apps into a separate

Snakefile would highly increase the reusability of the workflow. This utility Snakefile

could be integrated in multiple projects as generic rules can be reused in different

contexts. Sharing these snakemake rules and apps would optimally occur via a separate

repository or package collecting general purpose workflow functionality wrapped by

snakemake rules.

Fourthly, with respect to the different needs for archival of intermediate and final

workflow results, the structure of the output can be adjusted to reflect whether the

respective content requires archival. An example for the separation on top of the existing

folder structure could be as follows: a source folder containing a copy of the original

source data and metadata files, a cache folder for all intermediate and volatile files as

well as an output folder containing all user relevant results of the workflow (final odML

and annotated Nix files). Thus the cache folder can be removed if required.

Fifthly, to exploit snakemake capabilities, the workflow should run in parallel on a

compute cluster. With snakemake supporting common queuing systems, it facilitates

the migration from a local, serial implementation of the workflow towards a parallelized

execution on a high performance cluster. As the amount of data increases, such compute

power is becoming a necessity.

Future challenges The integration of a file modification timestamp based WMS with

a version control system where modified files are based on hashes is not straightforward.

Version control systems like git do not track the original modification time stamp of a

file, but instead update the timestamp every time they modify the file representation

on disc. This can lead to inconsistencies in the workflow management of snakemake if

a version control system was used to checkout files. In the presented workflow scenario

this is not an acute problem, since gin is only used to capture the content of all files of the

workflow once at the end of the generation process and not to review older versions of the

files. A workaround for avoiding version control and workflow management interference

would be to additionally track the original modification time stamp of files and restore

this information upon checkout.

The input and output file based workflow description as implemented by snakemake

leads to frequent reading and writing of data, which could be prevented in a monolithic

workflow implementation in a single script, as presented in Section 2.4. Here, the

workflow management increases the overhead of data preprocessing. However, there are

multiple factors which can counteract or attenuate this effect: i) the usage of efficient

reading and writing routines, ii) the reading of only the required part of the data and

iii) the workflow management itself, as it only executes required workflow rules. Since

snakemake is already handling the workflow in an optimized fashion, the most potential

for improvement lies in the read and write routines in terms of efficiency and loading of

specific data.

The current snakemake workflow implementation features a utility script, which

112

5.3. METADATA WORKFLOW IN THE VISION-FOR-ACTION PROJECT

contains centralized functionality needed by multiple apps (e.g. read and write data

to Nix or csv). This script is therefore a required input file for a multitude of rules,

and it stated explicitly in all input declarations. This duplicated code is not conform

with the common software development principle ’Don’t repeat yourself ’ (Martin, 2008).

However, within the framework of snakemake up to now, there is no satisfying solution

for this except to explicitly list the utility script (see Code Listing 5.4).

Version control was introduced to track changes with each execution of the workflow.

However, also hosting the original source files in a version controlled environment has

advantages. For example, changes in the source files can automatically trigger the

workflow and therefore form a fully automated system to update the packaged data

upon updates in the source files. However, the original source files and packaged data

should be hosted in two separate repositories as the read and write access to the first one

should be much stricter than for the second one. This would require the repository of

the original source files to trigger the snakemake workflow to build a packaged version

of the data and commit it to the second repository. The concept is the same as for

continuous integration platforms for software testing, with the only difference of the

size of data files handled. Therefore existing systems can potentially be modified to

serve this modified purpose. A pilot study investigating the integration of snakemake

workflows into the GIN system started in June 201925.

5.3.2 Workflow evaluation

We evaluate the presented snakemake workflow with respect to the essential require-

ments for metadata management workflows in complex, collaborative projects defined

in Section 2.7. An overview of the evaluation can be found in Table 5.3.

The presented workflow uses odML as a basis for metadata structuring. By using

the odML framework, common terminologies are automatically defined when setting

up the odML document (R1). This also automatically makes the metadata collection

machine and human readable (R2), as odML is xml based and offers user-friendly tools

for comprehensive visualization (odMLtables, odML-UI, odml_view).

We discussed potential extensions of the workflow including the automatic registra-

tion of workflow results at a central server. The combination of the presented workflow

with such a remote repository can also be used to host the workflow definition and

included scripts (R4). This can be achieved by extending the local tracking of versions,

e.g. using git and git-annex, by a remote server, e.g. the GIN web service (R3). In

combination with a fully automatized workflow (R5), the packaged data and additional

output files can be added automatically to a centralized repository and this way made

immediately accessible to all collaboration partners.

The presented workflow does not require manual interaction during the execution

and automatically executes only required workflow steps, improving the efficiency and

making the workflow less error-prone than a manual execution (R5). In case manual

preprocessing steps can not be avoided, e.g. for supervised spike sorting, the generated

25https://github.com/G-Node/gin-proc

113

CHAPTER 5. WORKFLOW MANAGEMENT

files enter as input files in the workflow. A mechanism for the automatic initiation of a

snakemake workflow hosted on GIN is under development.

The modularization introduced in the workflow by using snakemake rules and apps

makes the workflow highly flexible for future adaption and extensions (R6). Depending

on the required change, additional preprocessing scripts only need to be added while the

workflow definition itself remains unchanged. Changes involving the adaptation of the

workflow can be implemented by introducing additional input and output files, relating

new snakemake rules to existing ones. Due to the modularization of the workflow, generic

and project specific workflow steps can be easily separated making large parts of the

workflow reusable in different contexts (R7). The reusability can be further improved

by separation of generic rules in a dedicated, public repository.

The workflow can provide complete provenance tracking and reproducibility when

integrating all involved files into the version control system. This includes the workflow

definition (Snakefile), all files called by the workflow (apps, utility and other Python

scripts, configuration files, conda environment definitions), or corresponding version

identifiers of these, as well as the generated output files. In an optimal case this also

includes version identifiers of the original, read-only source files. The provenance track-

ing of Python dependencies can be implemented by specifying exact software versions

for the conda environments used for different rules in the workflow or by extracting the

current software stack during each run of the workflow (R8).

The workflow generates a compiled version of the data and metadata in a single Nix

file ensuring the consistency of contained data and metadata (R10). Accessing the data

only requires a current installation of the Neo package, making the data available also to

inexperienced users without installation of additional packages or custom scripts like the

ReachGraspIO. This lack of dependencies permits the user to benefit from continuously

deployed, packaged data as no additional software requirements are introduced when

updating the data. This way the user can exploit being continuously updated on the

data and metadata side without suffering from software version inconsistencies.

Nix is based on the standardized hdf5 format. This makes access to the data more

memory efficient. It can also be implemented for other programming languages besides

Python. Since data and metadata are linked, it makes it easy for users who are not

familiar with the metadata structure to access the metadata of a corresponding data

object (R9).

By building the workflow based on Python, all utilized software packages are open-

source (R11). This includes odML and odMLtables (Chapter 3) for metadata handling,

Neo and Nix for data representation and storage, and snakemake for the implementation

of the workflow. Additional canonical Python packages are used in the context of

individual apps, like Matplotlib for visualization as well as NumPy and SciPy for efficient

array based computation.

114

5.4. SUMMARY & GUIDELINES

Requirement Brochier et al., 2018 Vision-for-Action

R1: Common terminologies in project in project
R2: Structured machine & human readable metadata yes yes
R3: Central data and metadata location no planned
R4: Version control no yes
R5: Mostly automatic metadata compilation manual initialization yes
R6: Extendable metadata workflow minimal yes
R7: Reusability partial yes
R8: Standardized & reproducible preprocessing no yes
R9: Easy to access data and metadata for non-experts partial yes
R10: Consistent data and metadata partial yes
R11: Open source tools mostly yes

Table 5.3: Overview of features of the pipeline and workflow applied in the Reach-to-
Grasp (Brochier et al., 2018) and Vision-for-Action projects based on requirements for
data and metadata workflows as defined in Section 2.6 (extension of Table 2.3). The
presented workflow fulfills almost all essential requirements for metadata management
workflows in complex, collaborative projects.

5.4 Summary & guidelines

We motivated the need for workflow management tools and introduced appurtenant con-

cepts and implementations. We demonstrated snakemake as a flexible and lightweight

tool for Pythonic Make-style workflow description and explained its main features based

on two examples. In the next step we introduced the Vision-for-Action experiment as

a source of datasets that exceeds the previous Reach-to-Grasp experiment in size and

complexity. We described a workflow to handle data and metadata adhering to the FAIR

principles for this complex electrophysiology experiment – from the original recorded

data up to user friendly, comprehensively annotated data packages. We also provided

detailed examples, discussed features and limitations as well as future plans and chal-

lenges. The presented workflow implements the FAIR principles, as it makes data and

metadata findable, aggregates a comprehensive metadata collection and combines it

with the data in a single, searchable Nix file using global identifiers. Since Nix is a stan-

dardized format, the data and metadata can be easily indexed by databases making

the complete dataset also findable by other scientists once the dataset, or even only the

metadata, is published. The Nix format is an open, free and universally implementable

format making the data and metadata easily accessible with standard protocols. The

data and metadata representation is interoperable, since the description within the Nix

file is self contained and references to related metadata can be added using global iden-

tifiers. Provenance information can be tracked within the workflow and stored together

with the data in a versioned repository making, in combination with the comprehensive

metadata collection, the data reusable by other scientists. In addition the workflow im-

plementation provides a foundation for the set up of workflows for other experiments,

as generic components were identified and extracted from the workflow. This facilitates

the realization of the FAIR principles in future experiments. In addition we abstract

general guidelines from the presented workflow to ease the implementation of the FAIR

principles for other projects:

115

CHAPTER 5. WORKFLOW MANAGEMENT

G1: Plan ahead Integration and usage of data and metadata is a topic discussed

concurrently with the development of an experimental setup. There are typically

a number of decisions which can simplify the implementation of the data curation

workflow later on, like agreeing on a consistent metadata output format for all

hardware components or combining multiple data streams in a single file already

in the recording setup instead of realigning and merging these files later during

preprocessing steps. Also some time should be spend on the design and structure

of the metadata collection to avoid reorganizing metadata in later steps.

G2: Better more than less Tracking more metadata than the essential ones will

most likely turn out to be a wise choice later on, when irregularities are discovered

or suddenly a seemingly unimportant parameters is needed for the investigation.

G3: Make it explicit Implement the workflow used for data and metadata manage-

ment explicitly in a formalized workflow language instead of running scripts man-

ually in a certain order. This will make the workflow i) easier understandable,

both for others and oneself at a later time ii) provide an overview of the project

iii) document your data provenance and preprocessing

G4: Modularize Try to segment the workflow into independent steps, as this will

automatically make the workflow easier to understand and reuse, especially when

well documented. Try to separate generic processing steps from project specific

aspects to improve reusability.

G5: Keep it linear Avoid circular dependencies in the workflow, as these introduce

complex dependency structures and indicate a non-optimal segmentation of data

/ processing steps. When using snakemake circular dependencies are innately not

permitted.

G6: Think like a user Be user friendly. Try to provide the data and metadata in

a format that requires as little prior knowledge as possible. This increases the

chances that others can and more importantly, will make use of the data. Addi-

tionally, it paves the way for publication of the data without too much additional

overhead.

G7: Deploy Continuously This advice from the agile software development approach

may as well be applied in a scientific context. Do not attempt to build the perfect

workflow, but provide early on intermediate results to collaborators. This enables

them to provide valuable feedback and gives them a chance to work with the data

while they are still excited about it. For this version management is a prerequi-

site, since it is essential to be able to communicate about different versions of the

workflow output.

116

Chapter 6

Discussion

The field of experimental neuroscience deals with fundamental questions concerning the

functioning of the brain. To answer these questions, experimental data from many dif-

ferent modalities are collected in complex experiments and subsequently combined in

analyses. A cornerstone of the scientific method and a prerequisite for derived scien-

tific knowledge, however, is a complete and comprehensive description of the collected

data. We present the current state of data and metadata management in the neuro-

sciences based on a complex experiment and identify key issues. We address these by

presenting software solutions and tools for simplified and consistent data and metadata

handling. This includes the simplified and standardized aggregation of metadata as well

as the consistent presentation of data and the systematic structuring of workflows. We

extend this by presenting a second, more complex experiment and demonstrating the

integration of the tools to form a complete, reproducible workflow.

In Chapter 2 to Chapter 5 we present information processing and related tools and

principles in the context of making complex electrophysiological experiments accessible,

understandable and usable in a collaborative setting following the concepts described in

Zehl et al. (2016) and Zehl (2018). We introduce the FAIR principles for scientific data

management and stewardship and evaluate the presented tools and approaches based

on these. We describe two experiments and their corresponding data and metadata

processing pipelines. In doing so, we focus on the evolution of the approach used in the

second experiment based on a rigorous evaluation of the first.

The two presented experiments thus demonstrate the progression of approaches for

data management in this context. The first example, described in Chapter 2, is an

electrophysiological experiment involving a macaque monkey trained for a reach to

grasp task (Reach-to-Grasp experiment). The recording encompasses high-resolution

neuronal data as well as online and offline processed data together with task control and

behavioural signals. The metadata in this project was collected retrospectively and had

to be extracted from a variety of different file formats involving different preprocessing

steps in part manually by scientists. We describe the pipeline which was used to create

a comprehensive metadata collection for two published datasets and discuss limitations

of the chosen approach. Based on the described metadata pipeline we identify essential

requirements for the data and metadata handling in complex, collaborative projects.

117

CHAPTER 6. DISCUSSION

In Chapter 3 we present odMLtables, an open-source tool we developed to aid sci-

entists to collect metadata in a standardized format in their daily routines. odMLtables

facilitates the interaction with the hierarchical, xml based odML format by converting

between odML and a tabular representation of the metadata, making the odML format

accessible with widely used spreadsheet software. In addition, odMLtables implements

a number of functionalities that we identified as common steps in creating and using

metadata collections. This is an important step for metadata collection, since typically

a large fraction of metadata is collected neglectfully and in non-standardized formats.

A comprehensive metadata collection is essential to interpret the data. However, also

data require a standardized representation in order to make them easily accessible to

scientists. In Chapter 4 we introduce the Neo software, which provides a standardized,

generic data representation for electrophysiological data. We discuss the evolution of

the Neo data representation and highlight the most important features, such as the

support for numerous proprietary and open electrophysiological file formats as well as

the generic structure with a flexible annotation mechanism for custom description of

the data. For this purpose, we demonstrate the usage of Neo in three scenarios and list

open source tools building on the Neo structure.

Finally, we introduce the second electrophysiological experiment, conducted after

the completion of the Reach-to-Grasp experiment, which is named Vision-for-Action

and features a more complex experimental design. This increase in complexity required

us to reevaluate our data and metadata workflows in light of the limitation identified

in Chapter 2. Here, neuronal signals are recorded from two cortical areas at once using

two parallel, synchronized recording setups. In addition, the monkey is trained to track

visual targets in a horizontal plane with a manually operated cursor while his eye and

hand movements are recorded simultaneously. The organization of data and metadata

in this experiment is designed for facilitated access and organization of postprocessing

steps. We implement a comprehensive metadata workflow integrating metadata in a

modular, automatized fashion using the snakemake workflow management system and

describe the combination of data and metadata into user-friendly data packages. We

evaluate the new workflow based on the requirements identified in Chapter 2 and provide

generalized guidelines for the design of future projects.

Combining all of the presented approaches and tools, we suggest a general schema of

scientific data and metadata handling from generation to publication (Fig. 6.1) support-

ing the implementation of the FAIR principles. In this approach, data and metadata

are packaged into a common format using a modular workflow, as implemented in the

Vision-for-Action project. This workflow can be automatically initialized upon any

change in the underlying data or metadata (such as the addition of new data files or

changes in the preprocessing steps) and generates a packaged version of the data which

is then deployed to a central repository via a continuous integration system. This leads

to fast, efficient continuous deployment of data, that is guaranteed to be up-to-date.

From there scientists can access the packaged versions and run different analyses or

publish the datasets to make them available to the global scientific community, without

118

the need to supply additional custom codes.

The tools presented in this manuscript can be applied throughout the process from

data generation to publication:

odML provides the basic structure for metadata storage during compilation. The final

workflow outputs, the packaged data and metadata in the Nix format are con-

sistent with this representation. odML supports the implementation of the FAIR

principles by permitting the definition of common terminologies and providing a

standardized, accessible and searchable structure for metadata storage.

odMLtables is used for converting metadata into the standardized odML representation

and can be used for visual inspection and exploration of the metadata collection

in a tabular format at any stage. It supports the implementation of the FAIR

principles by facilitating the usage of odML in laboratory environments, thereby

supporting the spread of standardization of metadata.

Neo is used for data conversion and standardized representation during preprocessing,

compilation and analysis steps. It supports the implementation of the FAIR prin-

ciples by providing a standardized data representation and conversion to the Nix

format.

Nix is used for combined storage of data and metadata in a standardized, interoperable

format adhering to the FAIR principles by implementing persistent identifiers for

indexing of data and metadata.

Elephant functionality can be used during preprocessing steps as well as during later

analysis steps. Elephant contributes to preprocessing steps according to the FAIR

principles and builds on data adhering to the FAIR principles and can be used to

implement reproducible data analysis using these data.

snakemake is a workflow system which is used for implementing the preprocessing,

compilation, integration, packaging and deployment workflow and can as well be

used for systematic data analysis at later stages. Utilizing snakemake forms a

robust foundation for data and metadata management based on the FAIR princi-

ples.

Gin is a git-annex based repository that can be used for hosting the original raw data

and metadata to provide version control and a basis for a continuous integration

system. At the same time, it is our service of choice for version controlling and

hosting the packaged metadata and can serve as a platform for publishing the

data as it provides a digital object identifier (DOI) service. Also, it allows local

deployment on the server at an institution. GIN provides a service to make data

findable on a global scale according to the FAIR principles by providing storage

and digital object identifiers for data publication.

All presented tools fulfill the FAIR principle of being open and free. The majority of

the presented tools are not limited in their applicability to neuroscience. Thus, the

presented concepts are suitable for any application generating and processing data and

are therefore very well positioned for transfer into different domains.

119

CHAPTER 6. DISCUSSION

Experiment

Data Metadata

Preprocess

Compile

Integrate & Package

Comprehensive & Consistent
Data & Metadata

Deploy

Analysis A Analysis B

Data Publication

Research Publication Research Publication

C
om

m
u
n
it
y

S
iz

e

Continuous
Integration

Continuous
Deployment

au
to

m
at

ti
c

w
or

k
fl
ow

ex
ec

u
ti

on
ex

p
lo

ra
ti
on

&
an

al
y
si

s
u
si

n
g

st
an

d
ar

d
iz

ed
to

ol
s

Metadata

Figure 6.1: General schema of scientific data and metadata handling. Data and meta-
data generated during an experiment are processed, compiled, integrated and packaged
to be deployed to a central data & metadata repository (center). From this reference
data and metadata package scientist can run specific analysis and / or publish the
packaged data. The process can be initialized by using a continuous integration system,
where it is executed automatically and then be deployed in a readily packaged version
to a central repository. By following this process, the data can successively be made
sense of and used by a larger community up to a global level, when data are published.

120

6.1. COMPARISON OF REACH-TO-GRASP AND VISION-FOR-ACTION

WORKFLOWS FOR DATA AND METADATA HANDLING

6.1 Comparison of Reach-to-Grasp and Vision-for-Action

workflows for data and metadata handling

Since the implementation of the original metadata pipeline conceptually following Zehl

et al. (2016) and published in the Reach-to-Grasp datasets (Brochier et al., 2018) soft-

ware tools aiding data and metadata handling in neurosciences evolved (see e.g. Chap-

ters 3 and 4) and shortcomings of the original approach were identified by the use of the

data in a large collaborative setting. These changes in tool availability and conceptual

differences in the planning and execution of the Vision-for-Action experiment led to dif-

ferent data and metadata approaches in the two projects. We discuss these differences

with respect to specific aspects of the experiment in the following.

6.1.1 Experimental design

In the Reach-to-Grasp project systematic metadata collection started during the run-

time of the experiment. The lack of a detailed design of a metadata pipeline in prepa-

ration for the experiment resulted in metadata being stored in distributed files and

various formats, aggravating the systematic collection. To quickly make the most es-

sential metadata accessible with the data, a special loading routine (ReachGraspIO) was

implemented partially containing hard-coded metadata. This decision complicated the

systematic metadata aggregation in the long run by introducing circular dependencies

in the metadata pipeline set up around the IO, i.e. hard-coded metadata and metadata

of the growing metadata collection co-existed, leading to possible contradictions. In

the Vision-for-Action project we therefore tried to i) minimize the amount of metadata

source files, ii) provide them in a consistent, standardized format that is also human

readable and user-friendly and iii) refrained from developing a custom loading code that

includes data and metadata processing. The csv format together with additional struc-

tural restrictions provides suitable tables which can be easily converted to a hierarchical

odML structure using odMLtables (Chapter 3). In addition internal changes in the de-

sign of the data recording were implemented: With the RIVER setup, special attention

went into the integration of the three different types of recording systems. Instead of

running the three systems for tracking neuronal, hand and eye data in parallel, these

were integrated with the Kinarm system acting as master system for signal integration

and coordination. The two Neural Signal Processors serve as the only output streams

of the setup by not only writing neuronal, but also eye and hand signals to disk via the

two Cerebus systems. Another improvement implemented in the RIVER setup is the

generic encoding of events, which is also used to systematically write parameters and

additional metadata into the same files as the neuronal recording data. Storing the com-

plete recording data and metadata in as few files as possible ensures data consistency to

a high degree. The introduced generic encoding of events ameliorates the complex event

interpretation that was required in the Reach-to-Grasp experiment, where the interpre-

tation of individual events depended on the history of previous events in a complex

fashion. With the introduced encoding events have a static interpretation independent

121

CHAPTER 6. DISCUSSION

of other events. Additionally, they are more robust against errors in the recording as

they always consist of a pair of events, forming an information block. Furthermore, the

event encoding can be flexibly used for different modes (e.g. task types) of the recording

as each task has a unique mapping from these generic to task specific events.

6.1.2 Concept for metadata aggregation

The concept for compiling a metadata collection differs between the Reach-to-Grasp

and the Vision-for-Action experiment (Fig. 6.2). In the former, the metadata structure

is defined via a set of templates, which provide an odML structure containing default

values. These templates are generated dynamically by a script on a session-by-session

basis and are merged to build a complete template metadata structure. However, for

generating a suitable template structure information from the metadata sources is al-

ready required introducing additional interdependencies in the process and complicating

the metadata aggregation (Fig. 6.2, red arrow). In the next step, the default values are

replaced with the actual metadata entries extracted from the various source files, which

again requires knowledge about the odML structure in a semi hard coded fashion, i.e.

template generation and population of the template need to be compatible. Addition-

ally, during the aggregation process the metadata pipeline explicitly attempts to resolve

a number of interdependencies between the different metadata sources. This example

demonstrates that the intended separation between the structure and content of the

metadata collection is not feasible due to dependencies between the two, introducing

additional overhead and exception handling in the metadata aggregation procedure.

In the Vision-for-Action project, the metadata aggregation is implemented in a

different way: The metadata structure is generated by the same functions that extract

the metadata from a source file. This way the metadata content and structure for a

specific part of information are handled at the same location in the code, rather than

being distributed. This simplifies the metadata aggregation process and allows splitting

the process into multiple, independent processes (Fig. 6.2).

6.1.3 Changes due to software updates

The Reach-to-Grasp metadata pipeline was implemented using odML version 1.3, in

which a odML Properties can only be generated when containing at least one Value.

This constraint makes the odML structure as intermediately generated by the Reach-

to-Grasp workflow unnecessarily complicated by enforcing the usage of default values

for all potential Value entries. With the release of odML version 1.4 this constraint was

lifted, such that an odML structure can be created without any Value entries. Updating

the Reach-to-Grasp metadata aggregation pipeline to odML version 1.4 would therefore

simplify the pipeline to a small extend. However, this does not resolve conceptual issues

related to the general metadata aggregation concept.

Additionally, when the Reach-to-Grasp metadata pipeline was implemented, Neo

did not yet support the Nix format. For this reason the metadata aggregation pipeline

was used to generate a metadata collection in the odML format, but did not combine

122

6.1. COMPARISON OF REACH-TO-GRASP AND VISION-FOR-ACTION

WORKFLOWS FOR DATA AND METADATA HANDLING

Reach-to-Grasp

Metadata content

Metadata collection

Metadata structure

Vision-for-Action

Metadata collection

Metadata content

Figure 6.2: Comparison of the metadata aggregation for Reach-to-Grasp and Vision-
for-Action experiments. In the Reach-to-Grasp project, the metadata structure genera-
tion is strictly separated from the metadata content (left). The integration of data and
metadata occurs in a complex operation combining the two aspects. In the Vision-for-
Action project the structure is generated piece wise during the metadata is aggregation
(right). This approach has the advantage that data and metadata are already combined
from the beginning and the integration of the individual components of the metadata
collection is straight forward (e.g. by using odMLtables).

data and metadata in a single file. For this purpose, the ReachGraspIO was implemented

to provide a comparable functionality at runtime. However, this introduced additional

interdependencies within the project (Section 6.1.2) and attenuated the user-friendliness

by requiring the usage of custom code. This situation where code, metadata and data

are always required to be fully consistent on the one side, but on the other side the

metadata is continuously developed and extended leads to frequent inconsistencies on

the user side. This thwarts the implementation of analysis while still using an up-to-date

version of data and metadata.

6.1.4 Usability

The Reach-to-Grasp pipeline generates a single odML file per recording session. There-

fore accessing the data as well as the metadata requires the user to have specific, com-

patible versions of data and metadata files and software packages set up. This includes

the metadata in odML format, the data distributed across one nev, ns2 and ns6 file

for each recording session. In addition, the Neo and odML Python packages, as well

as the custom ReachGraspIO, is required for accessing all information contained in the

data and metadata files. This, however, only provides a basic annotation of the data

with some selected content from the metadata collection and does not provide direct

linking between data and metadata structures. If the users require additional metadata

beyond the annotations, they need to find and extract this information manually from

the metadata collection.

123

CHAPTER 6. DISCUSSION

Applying the same strategy in the Vision-for-Action project would have resulted

in several metadata source files and also two sets of neuronal data files, as the setup

contains two NSPs. Therefore, here the data and metadata workflow generates a single

Nix file combining data and metadata in a singular framework, in which the data and

basic metadata are accessible requiring only the Python Neo package. For accessing

additional metadata any commonly available hdf5 viewer can be used. A project in

development for visualization of Nix files taking into account basic metadata is NixView1.

Combining data and metadata in a single file guarantees the correspondence between

the two, whereas in the Reach-to-Grasp project this needs to asserted manually.

6.1.5 Pipeline and workflow approach

Within the Reach-to-Grasp project, a single Python script orchestrates the generation

of the odML structure and enrichment with metadata. This results in convoluted code as

one tries to separate the process of building and reading the odML structure and meta-

data sources with moderate success. In the Vision-for-Action project this separation of

creating templates and populating them is actively avoided resulting in a much more

flexible, reusable and scalable workflow consisting of modular steps interacting only via

their in- and output files. In addition, the workflow is easier to understand as the de-

pendencies can be automatically visualized and the workflow can naturally be executed

piece wise, which aids troubleshooting and exploration. Furthermore, the workflow steps

can be separated into generic and experiment specific components, where the former

provide a basis for the exchange and sharing of metadata workflow approaches across

projects and laboratories. This automatically makes data and metadata handling more

comparable and therefore provides a foundation for exchange and publication of scien-

tific data. For this reason, we abstracted a set of general guidelines for the handling of

data and metadata from our experiences, which are described in Section 5.4.

6.2 Outlook

6.2.1 The future of odMLtables

odMLtables emerged from a collection of odML utility functions that accumulated in

the context of the Reach-to-Grasp project. Currently, it is a standalone Python pack-

age with key dependencies on odML and PyQt5 . The graphical user interface (gui)

provides non-programmatic access to the core features of odMLtables. For historic rea-

sons, odMLtables internally uses a custom, dictionary-based representation of the odML

structure. Replacing this with a native odML Python object will ensure consistency

during the metadata manipulation using odMLtables.

In addition to odMLtables, a native odML editor, odML-UI , exists, which only oper-

ates on the hierarchical odML representation. Currently the four main features of the

odMLtables gui can be accessed via odML-UI if odMLtables is installed. However, in

1NixView, https://github.com/bendalab/nixview

124

6.2. OUTLOOK

the long run, it would be most user-friendly to integrate the two tools into a single one

thereby reducing the dependencies on the user side and providing a more concise set

of tools for metadata handling. With an enhanced odMLtables version using a Python

odML representation internally, integration of the two tools will be straightforward.

The metadata structure used within the Nix model is based on odML and metadata

can easily exported into and read from an odML file via the nix-odML-converter2. This

permits the straight forward integration of Nix as an additional file format supported

by odMLtables by utilizing the nix-odML-converter .

6.2.2 The future of Neo

We described the evolution of the Neo package from the original publication by Garcia,

Guarino, et al. (2014) to the current version 0.7.2 as well as potential enhancements in

future versions in Chapter 4. The basic concepts for capturing data within Neo objects

are rather stable and also the Neo container objects for handling temporal relations

between these data objects (Segments) did not change in the last releases. In contrast

to that, the container objects for capturing channel and general object relations was

updated frequently. In the current Neo version, this is implemented by ChannelIndex

objects covering a number of different functionalities for handling object relations. We

suggest splitting these different functionalities to create a set of a few simple objects

and methods fulfilling the same task. The first step of this was already implemented

in the form of array annotations. In the next steps we suggest to introduce Group and

View objects (Section 3.4.4). However, this suggestion is still under debate and will if

at all only be adjusted in the future.

With the release of Neo version 0.6 a standardized API for readers was introduced.

This harmonized the multiple implementation approaches collected in the Neo frame-

work and at the same time improved the performance of the readers. However, this

only affects the reading aspect of Neo. On the writing side, there is no standardization

of code, since the writing to multiple formats requires more diverse code organization

than funneling different file formats into a single representation. Additionally, the IOs

writing capabilities are limited to eight implementations. Thus, the effort of finding a

code structure suited for general writing must take that into account. However, two

useful extensions on the writing side will be i) a validator, checking the integrity be-

fore writing the Neo structure to disk and forming a standard of valid and writable

Neo structures and ii) unittests for ensuring the compatibility between writable and

readable Neo structures (see Fig. 6.3).

6.2.3 Automated workflow management

With the pilot study investigating the integration of snakemake workflows in the Gin

web service3 the development takes a direction towards a fully automated data and

metadata workflow. Here the creation of new recording data files triggers the workflow

2nix-odML-converter, https://pypi.org/project/nixodmlconverter
3gin-proc, https://github.com/G-Node/gin-proc

125

CHAPTER 6. DISCUSSION

annotating, preprocessing and preparing these data in a version controlled manner for

scientific usage. This permits the setup of a workflow based on continuous integration

and deployment principles, automatically executing the workflow upon a change in the

source files and updating the packaged data stored at a central, versioned location.

Here the setup of a system capable of dealing with large datasets as generated by

electrophysiological experiments and the sustainable storage of past versions of these

large data are issues to be solved before the system can be used in a scientific application.

6.2.4 Data analysis

For analysis of electrophysiological data, there are a number of tools available with

different analysis focuses (e.g. see Unakafova and Gail (2019)). Since the data and

metadata workflow presented in Chapter 5 creates a comprehensive data representation

in the hdf5 format, in principle any of these toolboxes can be used for analysis as long

as hdf5 reading capability is available in the corresponding programming language.

However, analysing the data using a Neo based approach provides a direct and simple

access to the data. This leaves mainly four tools for data analysis based on Neo:

Tridesclous4 for spike sorting, Open Electrophy5 (Garcia and Fourcaud-Trocmé, 2009) for

viewing and explorative analysis, SpykeViewer6 for navigation, analysis and visualization

and Elephant for comprehensive data analysis. Of course the data can also be extracted

from the Neo structure and used in any other Python-based analysis tool, however, this

forfeits the inherent data consistency and metadata annotations. Therefore Elephant

is the tool of choice here. It offers a wide range of basic and a number of advanced

methods for the analysis of spiking and continuous neural signal activity. As Elephant

is a community-driven open-source toolkit also extensions are highly welcome.

Any type of analysis can be supported also from the Neo side. Here extending

the set of utility functionality, e.g. for data selection and preparation for the analysis

would benefit the user independent of the specific analysis toolbox used. Two examples

for potential features to be extended and improved on the Neo side are i) the filter

functionality for efficient selection of data objects based on their attributes and custom

annotations ii) the utility functions for user-friendly interaction with memory-optimized

Neo structures (lazy objects).

6.2.5 Published datasets

The two electrophysiological datasets described in (Brochier et al., 2018) and published

in April 2018 have not been reused in an independent study. This might be due to

the fact, that even though the dataset is very rich, is also limited to a single cortical

area and a monkey performing a very specific task. Therefore the dataset might be

of scientific interest for two types of scientists: i) researchers investigating very similar

questions to those addressed in the experiment or that require parallel recordings on

4Tridesclous, https://tridesclous.readthedocs.io
5Open Electrophy, https://pypi.org/project/OpenElectrophy/
6SpykeViewer, https://pypi.org/project/spykeviewer/

126

6.2. OUTLOOK

F
il
e

F
or

m
at

s
N

eo
IO

s

Readers

S
ta

n
d
ar

d
iz

ed
Im

p
le

m
en

ta
ti

on

Neo Structure

Writers

V a l i d a t i o n

U
n
i
t
t
e
s
t

Figure 6.3: Neo IOs and future plans. Neo supports reading of multiple file formats.
A large fraction of these formats is read via standardized implementations of readers
whereas other rely on format-specific, custom implementations. In addition, Neo can
write to a number of formats with custom writers. We suggest to extend the current
implementation with a validation mechanism as well as a systematic unittest ap-
proach for formats that are read- and writable which ensures data consistency (dashed
boxes).

127

CHAPTER 6. DISCUSSION

96 electrodes or ii) researchers looking for a generic example datasets, e.g. to develop

new workflows or test new processing and analysis methods. For these, this dataset

might not be visible enough or the extensive description dissuasive, as typically much

less metadata is required for these purposes. In these cases, the indexing of the dataset

by a more general data catalogue will increase the discovery chances of the dataset, e.g.

via the Google dataset search7. However, the publication of the dataset has paid off as

the community now has a publicly available example of the type of data we deal with.

The high number of citations8 further demonstrates the importance and value of doing

the effort to publish data. Additionally these datasets have been frequently used for

teaching purposes, e.g. in tutorial Jupyter notebooks introducing snakemake workflows,

Neo and or Elephant, e.g. at the University of Toronto10.

6.2.6 Lessons to learn

As already hinted at in the future challenges for the Vision-for-Action workflow (Sec-

tion 5.3.1) and the guidelines formulated in Section 5.4, we applied a couple of concepts

from professional software development in the workflow implementation. Some concepts

which can be adapted for example for scientific software development from agile soft-

ware development are pair programming, continuous integration, short feedback loops

and continuous deployment (Shore and Warden, 2007). We already described in detail

the integration of continuous integration and deployment in the presented data and

metadata workflow. The pair programming technique for joint coding involves two pro-

grammers working in a team on a single computer. This technique promotes creative

approaches as well as code review during the implementation process. These features are

also of advantage for scientific programming and can therefore be easily adopted. The

concept of short feedback loops focuses on frequent interaction with the customer / user

of the software product to get immediate feedback and quickly adapt to customer needs.

In case of the presented workflows, the users would be the scientists using the packaged

data and metadata for analysis providing feedback for the implemented features of the

data packages. However, recognizing and implementing these concepts requires practice

and organization, meaning that the potential to learn from the software development

community is great, but it takes time and initiative to be implemented in a scientific

environment.

6.2.7 Concept extension

On the software side, the described workflow was developed for the specific research area

of neurophysiology by dealing with electrophysiological data from a monkey experiment.

However, in principle, the tools presented are capable of dealing with different measure-

ment modalities. For example the description of an electroencephalographic (EEG), a

7Google dataset search, https://toolbox.google.com/datasetsearch
8number of citations of (Brochier et al., 2018) on 23rd of August 2019 (1 year and 4.5 months after

publication) according to PubMed9: 6
10https://github.com/UofTCoders/Events/issues/239 and https://github.com/UofTCoders/

studyGroup/tree/gh-pages/lessons/python/snakemake_elephant_demo

128

6.2. OUTLOOK

functional magnetic resonance imaging (fMRI) dataset or a spiking network simulation

(e.g. using Nest11) should be possible using similar means as presented here as the

boundaries between the scientific areas are fuzzy. This will permit to easily apply the

same analysis methods on datasets e.g. on spiking activity from calcium imaging data

and sharp electrodes recordings and will, therefore, form a bridge between the different

areas of neuroscience. On a larger scale, the development of concepts and tools for data

and metadata management across scientific disciplines is an area of active development

(Amari et al., 2002; Cheung et al., 2009; Nichols and Pohl, 2015). Here our efforts to

provide a generic tool set located within the field of neuroscience provides a foundation

for the integration with other fields of science.

6.2.8 Dissemination of a data and metadata workflow system

The implementation of the data and metadata workflow is a natural precursor to pub-

lishing the datasets, such that the research community can benefit from the invested

effort. Such a workflow typically covers four aspects of data preparation (see also

Fig. 5.3): preprocessing of the data, aggregation of metadata, packaging of the data

and metadata and the versioning and deployment of the packages. The former requires

data and domain-specific processing steps, as the preparation of the data for analysis

is highly specific to the type of data. Here, the implementation of custom code or in-

tegration of tools in a scripted fashion can not be avoided. For the second step, the

aggregation of metadata, the required effort highly depends on the type of source files

generated during the experiment. In the ideal case of a comprehensive set of metadata

source files in a standardized format, the aggregation of the metadata collection can be

performed completely based on generic workflow steps (e.g. as the ones described in

5). Ideally, these workflow steps are also available publicly in the form of a collection of

generic workflow utility components. Packaging the data together with the metadata

again highly depends on the standardization of the formats used in previous steps. For

standardized formats utility functionality for easy integration of data and metadata

should be available. The versioning and deployment steps of the workflow are indepen-

dent of the scientific discipline and standards used. The automatic deployment of any

dataset to a commonly used data repository or hosting platform should be available

as a generic component of the workflow management system. In summary, the degree

of custom implementation effort for a given project highly depends on the number of

standardized tools and formats used within the project. In the ideal case of a very

standardized set of tools and formats, the effort for setting up a data and metadata

pipeline is minimal and consists mostly of the implementation of suitable preprocessing

steps for a particular type of data.

For the successful dissemination of the workflow concept based on snakemake as

presented here in the field of neuroscience, the establishment of a public collection

of snakemake utility functions is essential. These functions will provide the building

blocks for setting up data and metadata workflows. By collecting generic rules based

11Nest, https://www.nest-simulator.org/, RRID:SCR_002963, doi:10.5281/zenodo.2605421

129

CHAPTER 6. DISCUSSION

on tools with standardized interfaces and formats, both, the tools and the community

will benefit. The community grows, usability will avail from extended standardization

of data and metadata and finally, further facilitation of data publication and sharing

will occur.

Extensions The concept of workflow management is not limited to the application

in data and metadata management but can be applied e.g. also for data analysis and

publication as well as data acquisition. Here potential extensions towards the data ac-

quisition can include the integration of the data acquisition system in the continuous

integration system and data workflow. This would permit the prompt execution of

preprocessing steps upon data recording, providing immediate feedback to the experi-

menter about the data quality and potential issues in the recorded data. In the field

of electrophysiology a project promoting open hardware and software solutions is Open

Ephys12 (Siegle et al., 2017). This project provides modular open-source hardware for

tools for data acquisition and experiment control as well as accompanying software

solutions for data acquisition and visualization.

For metadata acquisition besides the presented solution utilizing csv files in com-

bination with odMLtables, also the integration of electronic labnotebooks (ELNs) is a

promising extension to data and metadata workflows in experimental laboratories. This

would be one solution to automatize the metadata integration into the workflow as dis-

cussed above. The advantage of ELNs is the automatic standardization of metadata

within the system of the ELN. Using a workflow management system, this information

can be accessed and potentially converted into other standardized metadata formats,

e.g. odML. One potential tool to perform such a conversion is odMLtables, it can act

as a bridge between odML and ELNs as many of these also support a tabular metadata

representation (see Section 3.4).

We discuss the usage of Gin as versioning and deployment service in the presented

workflow (5.3.1). Here, also other methods for providing the packaged data to collab-

orators and the scientific community is possible, e.g. the registration of the dataset

in a central database or a custom repository. Here, for example, the Gin service can

be installed on a local server, e.g. in case of infrastructure limitation or data privacy

restrictions. This would permit to use the same workflow as presented, only the remote

server location and authentication needs to be adapted.

In medical applications typically recorded data are anonymized using a standard-

ized procedure of assigning unique ids to datasets and removing human or machine

readable information that allows conclusions about the identity of the patient. This

anonymization process can be easily integrated into a workflow by adding a rule for the

modification of the data files which can optionally track the patient-identifier mapping

in a separate file only accessible to authorized personnel. In case of different levels of

authorizations, the data can be anonymized to different degrees and then copied to

locations only accessible by personnel with a certain authorization level. This way the

12OpenEphys, http://www.open-ephys.org/

130

6.2. OUTLOOK

anonymization procedure would be robust to human errors and could be even automa-

tized to a degree that no human has access to the patient-identity mapping.

6.2.9 Looking further ahead

A large part of the efforts presented in this manuscript arose from the fact, that data

generated by commercial recording systems were not complete and free of unintended

signals (artifacts). This lead to two types of development: the aggregation of as much

information as possible concerning the recording circumstances and the development of

extensive preprocessing steps including artifact detection. The question is: Is this really

necessary and will it always be like this?

For the first aspect, this is diligent work requiring first of all commercial recording

setup producers to take this aspect into consideration and extend and adjust their

systems according to the needs of scientist to comprehensively track the data generation.

For custom build setups or integrated systems as in the case of Vision-for-Action it will

still be in the scope of duties of the scientist to be aware of this issue and tackle it early

in the experiment development process.

The second aspect of artifacts in recording data is an issue typically improving with

technical development, e.g. better insulation of cables or less error-prone communication

protocols. However, no experimental setup will ever be completely free of artifacts and

also a change to the latest technology will never guarantee unintended side effects on

the data. Therefore careful quality checks of recording data will always be necessary,

only the amount of contaminated data might reduce with technical progress.

For these reasons workflows like the one presented in Chapter 5 deal with a funda-

mental aspect of contemporary scientific research. Therefore, they should be considered

as a key to well-founded scientific findings, and thus may be a key contributor to an

expanding field of data science in general.

131

CHAPTER 6. DISCUSSION

132

Appendix A

Supplementary description of the

Reach-to-Grasp experiment

A Experimental apparatus

The experimental apparatus was composed by a target object, a table switch, a visual

cue, and a reward system. On each recording day, the monkey was seated in a custom-

made primate chair and placed in front of that apparatus. The non-working arm of the

monkey was loosely restrained in a semi-flexed position. To control the home position

of the working hand between the reach-to-grasp movements, the table switch which

was installed close to the monkey at waist level, 5cm lateral to the mid-line, needed to

be pressed down. The target object was a stainless steel rectangular cuboid (40mm x

16mm x 10mm) rotated 45 degrees around the horizontal axis and pointing towards the

monkey (Fig. A.1a). It was located 13cm away from the table switch at 14cm height.

The posterior end of the object was attached through a low-friction horizontal shuttle

to a counterweight hidden inside the apparatus, which was used to set the object load.

The object load was set to one of two possible values to define the force type (LF

and HF) needed for pulling the object in each trial by deactivating and activating an

electromagnetic weight resting below the counterweight inside the apparatus. When

activated, it attached to the counterweight and increased overall weight from usually

100gram to 200gram, which corresponds roughly to a pulling force of 1Newton and

2Newton for LF and HF, respectively.

As already mentioned, the object was equipped with six sensors which monitored the

monkey’s reach-to-grasp behavior. Four force sensitive resistance sensors (FSR sensors)

on the object surface provided continuous measurement of the grip forces applied on

the object sides by the index and middle finger, as well as the thumb. The different

activation patterns of these four FSR sensors, in particular the different placement of the

thumb (see Fig. A.1 a), were used to detect online if the correct grip type was performed.

An additional FSR sensor was installed between the object and its counterweight. This

FSR sensor was used to measure the horizontally applied force needed to oppose the

corresponding object load. Due to the low, but still existing friction of the object

moving inside the horizontal shuttle, the measured force signal of this sensor is not

133

APPENDIX A. SUPPLEMENTARY DESCRIPTION OF THE REACH-TO-GRASP

EXPERIMENT

b

OT OR OBB

(GF pr2)

(Displ)

DO

home position SGI T

M

Figure A.1: Overview of the experimental apparatus and behavioral control system.
(a) Sketches of the experimental apparatus and the monkey performing the reach-to-
grasp task. Left: monkey in its home position with the working hand on the table
switch. Middle and right: monkey grasping the object with a side grip (SG) and a
precision grip (PG), respectively. Insets of middle and right sketch show the actual
position of the index finger (I), the thumb (T), and the middle finger (M) on the object
(brown cube) 11 . (b) Trial scheme of an example trial with the respective visual cues
(different illumination combinations of the 5 LEDs illustrated on top) shown to the
monkey at its respective times. The behavioral events are marked along the time axis
(see main text for abbreviations). Events with black font mark digitally recorded events,
whereas events with brown font indicate events (object touch OT, object release OR,
displacement onset DO, and object back to baseline OBB) which were extracted offline
from baseline deviations of the analog signals of the object’s sensors. Additionally, we
indicate by italic fonts events which were generated by the monkey, while all other
events are produced by LabView. The 8-bit binary code for the digital event signals
sent from LabView VI to the NSP at the respective times is shown below the time axis.
Example traces for the analog signals of the HE sensor (Displ; dark solid line) and one
of the 4 FSR sensors located at the object’s surface (GF pr2, light dotted line) used to
monitor the monkeys behavior and extract OT, OR, DO, and OBB are shown at the
bottom. (c) Outline of the devices and their wiring controlling the behavior. All analog
signal streams are colored in brown, whereas all digital signal streams are colored in
black.

134

A. EXPERIMENTAL APPARATUS

sensor channel ID label located at activated by used to identify

FSR 1 137 GF pr1 object’s top index finger’s touch PG type
FSR 2 138 GF side1 object’s left middle finger’s touch SG type
FSR 3 139 GF pr2 object’s bottom thumb touch PG type
FSR 4 140 GF side2 object’s right thumb touch SG type
FSR 5 141 LoadForce object’s spring object loading pulling force
HE 143 Displ object’s shuttle object displacement object’s position

Table A.1: Overview of the six object sensors used to monitor and control the monkey’s
behavior. The first four force sensitive resistance (FSR) sensors are used to monitor
the applied grip type. They are located on the surface of each object side and are
activated by the touch of the corresponding monkey’s finger. The fifth FSR is located
at the spring counterbalancing the pull resistance of the object and is used to measure
the pulling force applied by the monkey. The hall-effect sensor (HE) is located along
the low-friction shuttle of the object and used to measure the position of the object.
The signals of all sensors are saved in the ns2 with the stated channel ID and label (cf.
Fig. A.3).

perfectly proportional to the horizontal force needed to lift the opposed object load,

but sufficient to distinguish between LF and HF settings (cf., example in bottom right

panel of Fig. A.4 and Fig. A.6). The horizontal displacement of the object over a

maximal distance of 15mm was measured by a hall-effect (HE) sensor. All sensors of

the object are summarized in Table A.1. The visual cue system, composed of a square

of five LEDs (size 10 x 10 mm), was located just above the target object and used to

instruct the monkey about the requested behavior. While the central yellow LED was

used to warn the monkey that a trial had started, the four red corner LEDs were used to

code separately the grip and the force type for the requested trial type of each trial. In

this context the illumination of the two left, the two right, the two bottom, or the two

top LEDs coded for SG, PG, LF, or HF, respectively (see Fig. A.1 b for illustration).

The reward system consisted of a bucket filled with apple sauce and equipped with a

feeding tube and a pump allowing to deliver on demand the reward (few drops of the

apple sauce) to the monkey (Fig. A.1 a).

A.1 Behavioral control system

The core of the behavioral control system is a custom-made Virtual Instrument (VI)

in LabView that controls the digital event sequence and the requested behavior of each

trial in a recording. A digital event reflects hereby the activation or deactivation of

a physical device of the experimental apparatus. In this context, the LabView VI is

responsible to activate and deactivate the LEDs of the visual cue system, the reward

pump, and the electromagnet. The latter is not controlled by a digital event, but by

an analog square signal that switches the magnet on or off. To control the requested

behavior, the LabView VI monitors the monkey’s manipulation of the table switch and

the target object. The table switch as well as all sensors of the target object produce

continuous analog signals that are digitized by the NI converter card and fed into the

LabView VI of the setup computer (see Fig. A.2 computer 2). The square signal of

the table switch is then online reinterpreted as digital activation or deactivation event.

135

APPENDIX A. SUPPLEMENTARY DESCRIPTION OF THE REACH-TO-GRASP

EXPERIMENT

Figure A.2: Overview of the setup. The setup consisted of three main parts: the neural
recording platform, the experimental apparatus, and the behavioral control system.
The neural recording platform (top) was composed of the implanted Utah array with
its corresponding connector (CerePort), a headstage (Samtec or Patient cable), and the
Cerebus data acquisition (DAQ) system (i.e. the Front-End Amplifier, Neural Signal
Processor (NSP), and the Cerebus control software, Central Suite, installed on the
setup computer 1). The experimental apparatus (bottom left) consisted of the physical
devices which the monkeys had to interact with (i.e., the visual cue panel (square with
5 LEDs), the target object, the table switch, and the reward system). The behavioral
control system (bottom right) was built from hard- and software of National Instruments
(NI, National Instruments Corporation, Austin, Texas, USA). It was composed of a
NI connector block which was linked via a NI 6023E A-D converter card to setup
computer 2 on which the NI system design software, LabView, was running. To record
the behavioral data the behavioral control system was interlinked with the neuronal
recording platform via the NSP and the NI connector block. Setup differences between
the two monkeys are indicated in yellow and red for monkeys L and N, respectively.

Fig. A.1 c displays a schematic diagram on how the physical devices of the experimental

apparatus are connected to the setup computer and controlled and monitored by the

LabView VI. We will now describe a typical execution of the LabView VI during a

recording session in more detail.

The possible trial types were set to SG-LF, SG-HF, PG-LF, and PG-HF, alternating

with equal probability randomly in sequence between trials. Once the settings of the

overall task were defined, the LabView VI was started to repetitively run and control

the event sequence and behavior for each trial during the recording session.

Each single trial was run and controlled as follows:

The LabView VI only started a trial when the monkey deactivated the table switch

by pressing and holding it down (home position, Fig. A.1 a, left). This required not

much muscle activity, but simply the weight of the monkey’s hand on top of the smooth-

running switch. If the table switch was deactivated, the LabView VI internally initiated

a trial with a short time delay (TS-ON). In parallel, the program picked randomly one

of the possible trial types (e.g., SG-HF) and activated or deactivated the electromagnet

136

A. EXPERIMENTAL APPARATUS

accordingly to fit the chosen load force of the object (e.g., activated for HF). To inform

(or warn) the monkey that a new trial has started, the central LED was illuminated

400ms after the trial was initiated by the program (WS-ON). Four hundred ms after WS-

ON the grip type was revealed to the monkey by illuminating the corresponding corner

LEDs of the chosen trial type (CUE-ON, e.g., left LEDs for SG-ON). The LEDs of this

first cue were turned off again after 300ms (CUE-OFF). The CUE-OFF was followed

by a 1000ms preparatory delay at the end of which the monkey was informed about the

upcoming force type by again illuminating the corresponding corner LEDs of the chosen

trial type (GO-ON, e.g., top LEDs for HF-ON). This second cue also served as a GO

signal for the monkey to initiate the movement which was registered by the activation

of the table switch (SR-ON) when the monkey released it after a variable reaction time

(RT). The execution of the movement was composed of reaching, grasping, pulling and

holding the object in the position window for 500ms. The LabView VI controlled the

movement execution online by checking the used grip type, the object displacement and

the hold time. For checking the grip type, the grasp of the object was registered by

small deflections of the FSR surface sensor signals caused by the monkey’s fingers. A

FSR sensor was registered as activated if the deflection surpassed a predefined threshold.

The pattern of activated FSR sensors was then used by the LabView VI to control if

the monkey performed the requested grip type. This meant, in particular, to check for

SG and PG, if the FSR sensor on the right (GF side2), or on the bottom (GF pr2) of

the object was activated by the monkey’s thumb, respectively (see Fig. A.1 a, middle

and right). The other 2 sensors that measured force from the index and middle fingers

for the 2 grip types (GF side1, and GF pr1) were not controlled online. If the correct

grip was detected, the grip cue was illuminated again as a positive feedback. To check

the object displacement, the LabView VI measured if the deflection of the HE sensor

signal of the object was within the two defined position thresholds (4 and 14mm). The

time point at which the displacement signal surpassed the lower threshold was used by

the LabView VI to define the estimated start of the holding period (HS) online. If the

object remained within the position window for 500ms after the HS was set, LabView

activated the reward pump which provided the monkey with a drop of apple sauce as

reward for a successful trial. The time until the reward pump was deactivated again by

LabView was proportional to the duration of the object hold in the position window,

with a maximum duration and with this a maximum amount of reward for a 500ms

holding period. With this mechanism, both monkeys rapidly learned to hold the object

at least 500ms in nearly all trials. In parallel to the deactivation of the reward pump,

LabView turned off all LEDs to indicate that the running trial ended (WS-OFF). The

monkey was allowed to release the object at its own pace as soon as it received the

reward. A new trial sequence was started by LabView (TS-ON) as soon as the monkey

returned to the home position (new deactivation of the table switch).

An abort of the described trial sequence by LabView (error trial) was triggered by

the following three scenarios: (i) the monkey released the table switch before the GO

cue, (ii) the wrong grip type was registered, and (iii) the object was not pulled and held

137

APPENDIX A. SUPPLEMENTARY DESCRIPTION OF THE REACH-TO-GRASP

EXPERIMENT

long enough in the position window. In case one of these scenarios were registered by

LabView the trial was aborted. For monkey L, the LabView VI provided additionally

a negative feedback when aborting a trial by flickering all LEDs three times.

As displayed in Fig. A.1 c. the behavioral control system was connected to the

NSP of the Cerebus DAQ system to store the trial event sequence and the monkey’s

behavior of each trial in a recording along with the neural data registered by the neural

recording platform. For this, the analog signals of the sensors of the target object were

copied from the NI connector block to the analog input port of the Cerebus System

NSP via DC coupled BNC cables and connectors. In the NSP they were digitized with

a 16-bit resolution at 0.15 mV/bit and a sampling rate of 1kHz and saved in the ns2 file

under the channel ids listed in Table A.1. All digital or digitized events that register

the activation and deactivation of the table switch, the LEDs of the cue system, and

the reward pump, as well as the internally generated digital trial start event (TS-ON)

were coded as a 8-bit binary signal (see Table 2.2) and transferred via the NI connector

block to a 16-bit DB-37 input port of the NSP where they occupy the first 8 digits

(remaining digits are set to 1). In the NSP the now 16-bit binary signal of each event

was stored in its decimal representation and with its corresponding time point in the

nev file (see Table 2.2 and Fig. A.3).

A.2 Neural recording platform

The recording of the neural signals was performed using a neural recording platform

with components produced by Blackrock Microsystems (Salt Lake City, UT, USA,

www.blackrockmicro.com). The platform consisted of the multi-electrode Utah array,

a headstage, and a Cerebus data acquisition (DAQ) system. The latter is composed of

a Front-End Amplifier, a real-time Neural Signal Processor (NSP) and the control soft-

ware, Central Suite (version 4.15.0 and 6.03.01 for L and N, respectively), running on

Windows XP for L, and Windows 7 for N on the setup computer 1 (see Fig. Fig. A.3).

The Cerebus DAQ system was also connected to the behavioral control system via the

NI connector block to save the analog behavioral data and digital trial event signals that

were described in the previous section in parallel with the neural signals. All data were

transmitted from the NSP via an ethernet cable to be saved first locally on the setup

computer 1. After a recording day, all recordings were transferred to a data server. In

the following, we will describe the function of the different components of the neural

recording platform in more detail.

The implant location of the Utah array, as well as the electrode configuration of the

array of each monkey was described previously (see Fig. 2.2). The electrode identifica-

tion numbers (IDs) are determined by how the electrodes of the array are wired and

connected to the Cerebus Front-End Amplifier. See Appendix A.3 for details.

The analog Blackrock headstage with unity gain (Samtec for monkey L, and Patient

Cable for monkey N) was used to reduce the environmental noise. Overall, the reduction

of the noise was better with the Patient Cable than with the Samtec headstage.

In the Front-End Amplifier, each of the 96 neural signals was differentially amplified

138

A. EXPERIMENTAL APPARATUS

with respect to the reference input of its corresponding connector bank (gain 5000) and

filtered with a 1st-order 0.3Hz high pass filter (full-bandwidth mode) and a 3rd-order

7.5kHz Butterworth low pass filter. After that, the band-pass filtered neuronal signals

were digitized with a 16-bit resolution at 0.25V/bit and a sampling rate of 30kHz,

in the following called “raw signal”. The digitized signals were converted into a single

multiplexed optical output and transmitted via a fiber-optic data link to the NSP. In the

NSP the raw signals were saved in a ns5-file for monkey L and in a ns6-file for monkey

N. The file format depended on the firmware and software version of the Cerebus DAQ

system. In addition to the neural signals, the NSP received the analog behavioral signal

recorded by the behavioral control system via the analog input port. These behavioral

signals were digitized and saved with a sampling rate of 1kHz in a ns2-file. For monkey

N, the ns2-file also contained a filtered and downsampled version of the raw signals, in

the following called “LFP data”. To extract the LFP data, a copy of the raw data was

online digitally low-pass filtered at 250Hz (Butterworth, 4th order), and downsampled

to 1kHz within the NSP.

The NSP performed also an online spike waveform detection and classification con-

trolled via the Central Suite software. The sorted spikes were used for a first online

inspection of the data as well as for selecting and saving the spike waveforms for offline

sorting. For this purpose the neuronal raw signals were for monkey L online high-pass

filtered at 250 Hz (Butterworth, 4th order) and for monkey N band-pass filtered between

250Hz and 5kHz (Butterworth, 2nd order). Afterwards, the waveforms were detected

by threshold crossing (manually set). These waveforms were then sorted by requesting

the signal from identified neurons to follow through up to five hoops set by the user

(all individually for each channel). To get an overview of the quality of the data during

the recordings, the sorted waveforms were displayed in the online classification window

provided by Central Suite.

The thresholds (one for each channel) for the spike waveform detection were not

modified during a session and were saved in the nev-file for each session along with

all other settings (e.g. filter setting etc) and configurations of Central Suite. The

data and corresponding settings of Central Suite can also be inspected offline using

the Blackrock software CentralPlay even in the absence of the Blackrock hardware

system. Each time the high-pass filtered signal passed the threshold, a snippet of

1.6ms (48 samples) for monkey L and 1.3ms (38 samples) for monkey N was cut and

saved as potential spike waveform. The snippet was cut with 10 sample points before

threshold crossing and 38 or 28 points after for monkey L or N, respectively. Waveforms

identified as potential single units (online sorted spikes) were labeled with IDs from 1

to 16. Unsorted waveforms were labeled with ID 0. These potential spike waveforms

were saved together with their respective time stamps in the nev-file. Due to the high

number of electrodes, online spike-sorting was moderately reliable. We therefore decided

to re-sort spiking activity offline on each channel using the Plexon Offline Spike Sorter

(Plexon Inc, Dallas, Texas, USA, version 3.3, for details see Appendix B). Results of

offline sorting were saved in a copy of the original nev-file with an updated file name.

139

APPENDIX A. SUPPLEMENTARY DESCRIPTION OF THE REACH-TO-GRASP

EXPERIMENT

All data files (nev, ns5/6, ccf) were saved on disk and backed-up on a data server at

the end of the recording sessions. The information collected here are partly taken from

(Riehle et al., 2013; Zehl et al., 2016).

A.3 Origin of the channel IDs

The neuronal signal inputs to the Front-End Amplifier were grouped into four banks

(A-D or 0-3) from which only the first 3 were used. Each bank consists of a male

header with 34 pins of which 32 were the neuronal signal input channels. The other two

channels served as reference and ground, respectively. In Central Suite, the identification

(ID) number of each electrode of the array is defined by the position on the input

bank and pin of the Cerebus Front-End Amplifier. For this Central Suite multiplies

the bank ID (0, 1, 2, or 3) with the number of pins for neural signal input channels

(32) and adds the ID of the pin the electrode is connected to (cf. ID conversion in

Fig. A.3). The electrode wiring of the Utah array is, though, not coordinated to the

input banks of the Front-End Amplifer which leads to spatially unordered electrode

IDs. Nevertheless, Utah arrays are fabricated usually in the same way where the corner

electrodes are unconnected leading to a default (unordered) electrode ID configuration

(cf. electrode configuration of monkey N in Fig. 2.2). If in the fabrication process one of

the corner electrodes was registered to be of significantly higher quality than any other

electrodes of the grid, the corner electrode was connected instead and thereby changed

the corresponding electrode configuration (cf. electrode configuration of monkey L in

Fig. 2.2). This led to the different ID sequences of the arrays for monkey L and N (see

Fig. 2.2). To facilitate the comparison of results between arrays with different electrode

configurations, we assigned new IDs that reflect the spatial organization of the array.

For this we used as reference the lower left corner electrode, when the connected wire

bundle is showing to the right. These fabrication-independent, connector-aligned IDs

increase linearly from bottom left to top right, line by line. They are also shown in

Fig. 2.2 d as gray numbers in the array sketch, which thereby provides the mapping of

the Blackrock IDs to the connector-aligned IDs.

A visual summary of the available data is given in Fig. A.4 and Fig. A.5 for monkey

L, and Fig. A.6 and Fig. A.7 for monkey N. The first of these figures shows the sequence

of trials as well as selected raw recorded time series, spike trains, unit wave forms, and

behavioral signals for one particular trial. The second of these figures contrasts parallel

neuronal data across channels in a specific trial with neuronal data across trials in a

specific channel.

B Data preprocessing

After the recordings, a number of preprocessing steps (pre in the sense of before the

actual upcoming data analysis, but being the post-processing after the recording) were

performed as described below. This includes (i) the translation of the digital events

from their binary codes set by the DAQ system to a human-readable format putting the

140

B. DATA PREPROCESSING

digital

input

port

G
F
 p

r1

G
F
 s

id
e
1

G
F
 p

r2

G
F
 s

id
e
2

L
o
a
d
F
o
rc

e

D
is

p
l

R
W

 p
u
m

p

T
S
-O

N

L
E
D

c

L
E
D

b
l

L
E
D

tr

L
E
D

tl

L
E
D

b
r

ta
b
le

 s
w

it
c
h

NI

connector

block

Figure A.3: Sketch of the components related to the recording of the neuronal signals.
Data were recorded using a Utah array, which was linked via its connector (CerePort)
to a headstage (Samtec or Patient Cable) with a unity gain. From there the neural
signals were transferred to the Cerebus Front-End Amplifier, where they were amplified,
filtered and digitized. The digitized signals were converted into a single multiplex optical
output and sent via a fiber-optic data link to the Neural Signal Processor (NSP), which
is controlled by the Cerebus control software (Central Suite). Within the NSP the time
points and waveforms of potential spikes were extracted online from a correspondingly
processed copy of the neural signals and saved in the nev file. Simultaneously, the
continuous raw signals (sampled at 30 kHz) were saved in the ns5 (for monkey L) or ns6
file (for monkey N). In parallel to the neural signals the NSP received also the digital
trial events produced by the LabView VI, and the analog signals of the object’s sensors
via the NI connector block of the behavioral control system. While the digital trial
events were saved along with the extracted potential spikes in the nev file, the analog
signals of the sensors were digitized and saved in the ns2 file. For monkey N, a filtered
and downsampled version of the neural signals (0.3–250 Hz at 1 kHz) was also saved
in the ns2 file. Components and settings specific to monkey L and N are indicated by
yellow and red, respectively.

141

APPENDIX A. SUPPLEMENTARY DESCRIPTION OF THE REACH-TO-GRASP

EXPERIMENT

events in context of the expected executed trial event sequence, (ii) the offline detection

of behavioral trial events and object load force from the analog signals recorded by the

sensors of the target object, and (iii) the offline spike sorting.

B.1 Translation of digital events to trial events

Table 2.2 lists the 8-bit combinations that were sent by LabView to the Experimental

Apparatus to control the behavior. Following a binary to decimal conversion, they were

saved as event codes (Table 2.2) during the experiment along with their time stamps

in the .nev file. In the first preprocessing step, these event codes were translated to a

human-readable format and put into context of an expected trial event sequence. The

validation against the latter was used to identify incomplete, correct and error trials.

Error trials were further differentiated into error types (e.g., grip error). This digital

event translation and interpretation (cf. Table 2.2) performed automatically within the

reach-to-grasp loading routine.

Translation table of the 8 bits to the event codes and their behavioral meaning

(labels). The 8 bits (see Table 2.2 for their meaning) were sent from LabView to NSP

during the trial sequence (Fig. Fig. A.1). The event codes are the decimal version of

the bit sequence assuming another byte with all bits set to 1 in front. The event codes

are found in the .nev files with a time stamp and indicate the occurrence of a stimulus /

behavioral event as indicated in the center column (’label’). Due to different versions of

the LabView control program for monkey L and N (see text for details) the event codes

for the same label may be different for the two monkeys. Also some event codes do not

have a concrete meaning (miscellaneous) and occur sporadically in the .nev file due to

a mistake in the sampling of the digital events - they have to be ignored. In the table

the event codes are sorted in sequential order from top to bottom with respect to the

task, i.e. their order corresponds to the sequence found in the .nev file in an successful

trial.

B.2 Preprocessing of behavioral analog signals

Some behavioral events such as the monkey touching the object or the onset of the object

displacement by the monkey were controlled during the experiment, but their online-

detected timing was approximate and not saved (see details in section Appendix A.1).

However, these events can be relevant for data analysis and they were thus computed

offline from the analog signals of the four FSR sensors measuring the monkey’s grip and

the HE sensor measuring the object displacement. We implemented a custom-made

Matlab Event-Detection toolbox to detect 8 specific events: the precise timing of object

touch (OT) and object release (OR) from the force traces as well as the timing of dis-

placement onset (DO) and object back to baseline (OBB) from the displacement trace,

and finally the onset and offset of the plateau phase in the force and displacement traces.

The plateau phase of the displacement signal indicates the timing and stability of the

holding period, and its onset is used to calculate offline the hold start (HS) signal. The

toolbox performed an automatic detection of these events and their timing was first ap-

142

B. DATA PREPROCESSING

proximated by threshold crossing and then fine-tuned by back-comparison of the traces

with baseline level from the point of threshold crossing. Since the automatic detection

was prone to errors, the trials were visually inspected one by one and the timing of

the automatically detected events were manually corrected if they did not match the

event times as visually identified. In addition, a Matlab script was used to inspect the

load force traces in each trial to control if the actual object load corresponded to the

programmed object load. This procedure ensured that the electro-magnet controlling

the object load was properly activated throughout the recording session.

B.3 Offline spike sorting

The spike waveforms which were extracted and saved (in the nev file) during the record-

ing were offline sorted using the Plexon Offline Sorter (version 3.3.3). To keep the

variability in the half-manual spike sorting at a minimum, all sortings were performed

by the same person (A. Riehle). The spike sorting started with loading the complete

nev file of a session into the Plexon Offline Sorter. The spike sorting was performed

on a duplicate of the data file to keep the original data intact. We started by joining

all different waveforms extracted online from each channel separately back again into

one pool and initially marked as “unsorted waveforms” in the Plexon Offline Sorter.

Thereby, we ignored the result of the preliminary online waveform sorting (units 0-16

in the nev file) that was performed during the recording via Central Suite software,

which served solely to extract waveforms and gain an overview of the quality of the

spiking activity. For the invalidation of cross-channel artifacts (e.g., chewing artifacts)

all waveforms that occurred simultaneously on a defined percentage of channels (70%)

were marked as “invalidated waveforms” in Plexon Offline Sorter. Such artifacts oc-

curred only in the recording session of monkey L. Furthermore, a waveform rejection

was performed. Thereby all waveforms of abnormally large amplitude and/or atypical

shape on a channel were manually marked as “invalidated waveforms” in Plexon Offline

Sorter.

The actual spike sorting was then performed on the remaining unsorted waveforms

(i.e., those not marked as invalidated waveforms) individually for each channel. We

used different algorithms to split these waveforms into clusters in a 2- or 3-dimensional

principal component (PC) space. The dimensionality of the PC space was chosen ac-

cording to the best separation. The main algorithms used were K-Means(-Scan) and

Valley Seeking (chosen according to the best separation). We used a fixed threshold

for outliers (a parameter to be determined in the Plexon Offline Sorter) between 1.8

(K-Means) and 2 (Valley Seeking) to get comparable sorting results. The spikes of the

sorted clusters were then controlled using the inter-spike interval (ISI) distributions and

the auto- and cross-correlation plots. Units were ordered manually from best to worst

(assigning increasing unit IDs 1-16 in the Plexon Offline Sorter) by considering the am-

plitude of the waveform (the higher the better), the outcomes of the ISI analysis (no or

low number of spikes with an ISI smaller than 2 ms), the correlation histograms, and

identifiable cluster shapes. Waveforms in the cluster with the highest unit ID (worst) on

143

APPENDIX A. SUPPLEMENTARY DESCRIPTION OF THE REACH-TO-GRASP

EXPERIMENT

monkey sorting ID # SUA # MUA
electrodes with

SUA SUA or MUA

L *-02 93 49 65 86
N *-03 156 19 78 89

Table A.2: Overview of offline sorted single and multi unit activity (SUA and MUA).
For the recording of monkey L it was possible to sort out 93 SUAs and 28 MUAs
distributed over 65 of the 96 electrodes of the Utah array, with 21 additional electrodes
with further MUA recordings. For the recording of monkey N it was possible to sort
out 156 SUAs and 8 MUAs distributed over 78 of the 96 electrodes of the Utah array,
with 11 additional electrodes with further MUA recordings. For details on the offline
spike sorting see Appendix B.3.

a given channel may contain multi-unit activity. Clusters with unacceptable outcomes

(completely or partly overlapping waveforms), including those with only a few spikes,

left assigned as “unsorted waveforms” in Plexon Offline Sorter. This offline spike sorted

nev file was saved under the file name of the original nev file with an added two-digit

numeric postfix (e.g. -01). In this file, unit ID 255 contains invalidated waveforms, unit

ID 0 contains the unsorted waveforms (that may enter a further cluster analysis for

spike sorting), and unit IDs 1-16 contain the time stamps and waveforms of the sorted

single- or multi-units (as in the Plexon Offline Sorter). Unit IDs that are considered

to represent multi-unit activity are documented in the metadata. The nev file with the

sorted units can be loaded again into the Plexon Offline Sorter to visualize all the sorted

spikes and rework the spike sorting.

B.4 Code availability

All available code required to access the data as described in Appendix E is stored

along with the datasets. The provided code includes, in particular: (i) a snapshot of

the Python Neo package (see also Chapter 4), (ii) a snapshot of the Python odML

package (see also Section 1.1.1), (iii) the custom-written ReachGraspIO extending the

Neo package, (iv) the example script shown and described in Appendix E, (v) the code

shown and described in Appendix E demonstrating how to access the data in Matlab.

In addition to these frozen versions of the code, we recommend to use updated

versions of the code to benefit from future enhancements, bug fixes and increased com-

patibility with future Python releases or novel applications that rely on recent versions of

Neo and/or odML. Complete link collections to the two libraries can be found online1,2.

Importantly, both projects are hosted and version-controlled via Github3,4.

1
Neo, http://neuralensemble.org/neo/

2
odML, andhttp://www.g-node.org/projects/odml

3
Neo, https://github.com/NeuralEnsemble/python-neo

4
odML, https://github.com/G-Node/python-odml

144

C. DATA RECORDS

C Data records

All data and metadata are publicly available via the data portal of the German Neuroin-

formatics Node (G-Node) of the International Neuroinformatics Coordination Facility

(INCF), called GNData5. Table 2.1 provides an overview of the name, size, and content

of all files for each published dataset of monkey L and N. The datasets of both monkeys

consist of four parts: (i) the primary data are provided as the original data files obtained

from the Central Suite software stored in the data format specified by the manufacturer

(in particular, nev, ns5 and ns6 format) of the neural recording platform, Blackrock

Microsystems; (ii) an offline sorted version of the neural spike data (cf. Appendix B.3)

is provided in a second nev file; (iii) metadata are provided as one file per dataset in the

odML format (Grewe, Wachtler, and Benda, 2011; Zehl et al., 2016); and (iv) a mat file

is provided containing the continuous neural raw data together with the offline sorted

spike data, both annotated with the corresponding metadata.

Overview of recording days of the published datasets. For both monkeys, we chose

to publish the first dataset (rec*-001) of the recording day. For details on the published

datasets see Table 2.1.

The dataset l101210-001 from monkey L is the first out of 9 recording sessions

conducted on Friday, December 10, 2010, while the dataset i140703-001 from monkey

N is the first out of only 3 recording sessions conducted on Thursday, July 3, 2014.

Both datasets were recorded in the late morning. The following recording day went on

for nearly one hour and a half for monkey L, and one hour for monkey N. Although

the recording from monkey N lasted with 16:43 min several minutes longer than the

recording from monkey L with only 11:49 min, monkey L executed 204 trials, while

monkey N only performed 160 trials in total. However, monkey L performed only 70%

of all trials correctly, whereas monkey N successfully completed 90% of all trials during

the recording (cf. Table 2.1). Nonetheless, the high percentage of error trials in monkey

L are mainly caused by an too early movement onsets reflecting the eagerness, but also

the nervousness of the monkey L’s character. In contrast to these error types, monkey L

used only 12 times the wrong grip compared to monkey N who performed an incorrect

grip type 16 times during the recording.

Overview of trials performed during the published datasets. Of the stated number

of error trials, the monkey L and N used the wrong grip type in 12 and 16 trials,

respectively. In the remaining error trials the monkeys initiated the movement too

early. Trial types were altered randomly in the recordings which led to slightly different

trial numbers for the different trial types.

For both monkeys the trial types alternated randomly between trials leading to

slightly different numbers of trials with the same trial type in the each dataset (cf.

Table 2.1).

The quality of the spiking activity in the datasets of both monkeys was high, which

allowed us to perform a relatively robust offline spike sorting with high numbers of

single unit activity (SUA) distributed over all electrodes of the array (for details see

5GNData, http://g-node.github.io/g-node-portal/

145

APPENDIX A. SUPPLEMENTARY DESCRIPTION OF THE REACH-TO-GRASP

EXPERIMENT

1 11 21 31 41 51 61 71 81 91 100
trial ID

sequence of the first 100 trials
total: # 204 / * errors: # 69 PGHF: # 35 PGLF: # 34 SGHF: # 36 SGLF: # 44

electrode pos.

0.0 0.4 0.8 1.2
ms

unit 1 (SUA)

0.0 0.4 0.8 1.2
ms

unit 2 (SUA)

0.0 0.4 0.8 1.2
ms

−100

−50

0

50

100

uV

unit 3 (MUA)

TS-ON WS-ON CUE-ON -OFF GO SR RW-ON STOP

1

2

3

un
it

ID

spiketrains

TS-ON WS-ON CUE-ON -OFF GO SR RW-ON STOP

−400

−300

−200

−100

0

100

200

300

uV

500 ms

"raw" signal

OT DO

FS
Rp

la
t-O

N

HE
pl
at
-O
N

RW
-O
N

FS
Rp

la
t-O

FF OR

−2

−1

0

1

2

zs
co
re

250 ms

grip force and object displacement

SGLF SGHF
0.000

0.025

0.050

0.075

0.100

0.125

V

load/pull force

Figure A.4: Overview of data types contained in l101210-001. The figure displays the
different data types contained in the selected dataset of monkey L. Top panel: sequence
of the first 100 trials (for trial types and errors see color in legend) and the total num-
ber of trials (see # for correct, error, trial types in legend); the red diamond marks the
selected trial (trial ID: 2) for panels below; the orange diamond marks an additional
trial selected to demonstrate load/pull force differences between the averaged load force
signals in the bottom right panel. Asterisks indicate error trials (black asterisks: grip
errors). Second row, left panel: position of selected electrode (in red) for the data
plots (electrode ID: 71). Second row, remaining panels: waveforms of three units from
the selected electrode. Third row: spike trains of displayed units for the selected trial.
Forth row: raw signal for the selected trial; gray shaded area marks the time window
corresponding to the bottom left panel. Bottom left panel: grip force (gray) and ob-
ject displacement (black) signals for the selected trial. Bottom right panel: averaged
load/pull force signals for the duration of the plateau of the grip force signal for the
selected LF and HF trial. Important trial events are indicated as vertical lines in the
corresponding data plots. 146

C. DATA RECORDS

3

10

17

24

31

38

45

52

59

66

73

80

87

94

el
ec

tr
od

e
id

TS
-ON

TS
-ON

WS-O
N

WS-O
N

CUE-O
N

CUE-O
N

CUE-O
FF

CUE-O
FF

GO-ON
GO-ON

RW-ON
RW-ON

 148 uV

single trial

1

2

3

4

5

6

7

8

9

10

11

12

13

14

tr
ia

l i
d

 148 uV

single electrode

801 1801 2801 3801
time [ms]

3
10
17
24
31
38
45
52
59
66
73
80
87
94

el
ec

tr
od

e
id

801 1801 2801 3801
time [ms]

1
2
3
4
5
6
7
8
9
10
11
12
13
14

tr
ia

l i
d

Figure A.5: Overview of raw signal and spike data of monkey L (l101210-001). Left
panels: Raw signal (top) and spike data of unit IDs 1 on each given electrode (bottom)
for a single trial (trial ID: 2) across a selection of electrodes. Right panels: Raw signal
(top) and spike data from single unit ID 1 (bottom) across selected correctly performed
trials on one electrode (electrode ID: 3). Trial events (TS-ON, WS-ON, CUE-ON, CUE-
OFF, GO-ON, and RW-ON) are indicated as colored vertical lines in each plot. Trial
types of selected trials in upper right panels are indicated as color (SGHF: dark blue;
SGLF: cyan; PGHF: dark green; PGLF: light green)

147

APPENDIX A. SUPPLEMENTARY DESCRIPTION OF THE REACH-TO-GRASP

EXPERIMENT

1 11 21 31 41 51 61 71 81 91 100
trial ID

sequence of the first 100 trials
total: # 161 / * errors: # 19 PGHF: # 40 PGLF: # 42 SGHF: # 38 SGLF: # 38

electrode pos.

−0.25 0.00 0.25 0.50 0.75
ms

unit 1 (SUA)

−0.25 0.00 0.25 0.50 0.75
ms

unit 2 (SUA)

−0.25 0.00 0.25 0.50 0.75
ms

−150

−100

−50

0

50

100

uV

unit 3 (MUA)

TS-ON WS-ON CUE-ON -OFF GO SR RW-ON STOP

1

2

3

un
it

ID

spiketrains

TS-ON WS-ON CUE-ON -OFF GO SR RW-ON STOP

−300

−200

−100

0

100

200

uV

500 ms

"raw" signal

OT DO
FS

Rp
la

t-O
N

HE
pl
at
-O
N

FS
Rp

la
t-O

FF

RW
-O
N OR

−2

−1

0

1

2

zs
co
re

250 ms

grip force and object displacement

PGLF PGHF
0.0

0.1

0.2

0.3

0.4

0.5

V

load/pull force

Figure A.6: Overview of data types contained in i140703-001. The figure displays the
different data types contained in the selected dataset of monkey N. Top panel: sequence
of the first 100 trials (for trial types and errors see color in legend) and the total number
of trials (see # for correct, error, trial types in legend); the red diamond marks the
selected trial (trial ID: 9) for panels below; the orange diamond marks an additional
trial selected to demonstrate load/pull force differences between the averaged load force
signals in the bottom right panel. Asterisks indicate error trials (black asterisks: grip
errors). Second row, left panel: position of selected electrode (in red) for the data
plots (electrode ID: 63). Second row, remaining panels: waveforms of three units from
the selected electrode. Third row: spike trains of displayed units for the selected trial.
Forth row panel: raw signal for the selected trial; gray shaded area marks the time
window corresponding to the bottom left panel. Bottom left panel: grip force (gray)
and object displacement (black) signals for the selected trial. Bottom right panel:
averaged load/pull force signals for the duration of the plateau of the grip force signal
for the selected LF and HF trial. Important trial events are indicated as vertical lines
in the corresponding data plots. 148

C. DATA RECORDS

1

8

15

22

29

36

43

50

57

64

71

78

85

92

el
ec

tr
od

e
id

TS
-ON

TS
-ON

WS-O
N

WS-O
N

CUE-O
N

CUE-O
N

CUE-O
FF

CUE-O
FF

GO-ON
GO-ON

RW-ON
RW-ON

 130 uV

single trial

1

2

3

4

5

6

7

8

9

10

11

12

13

14

tr
ia

l i
d

 130 uV

single electrode

793 1793 2793 3793
time [ms]

1
8

15
22
29
36
43
50
57
64
71
78
85
92

el
ec

tr
od

e
id

793 1793 2793 3793
time [ms]

1
2
3
4
5
6
7
8
9
10
11
12
13
14

tr
ia

l i
d

Figure A.7: Overview of LFP and spike data of monkey N (i140703-001). Left panels:
LFP data (top) and spike data of unit IDs 1 on each given electrode (bottom) for a
single trial (trial ID: 1) across a selection of electrodes. Right panels: LFP data (top)
and spike data from single unit ID 1 (bottom) across selected correctly performed trials
on one electrode (electrode ID: 1). Trial events (TS-ON, WS-ON,CUE-ON, CUE-OFF,
GO-ON, and RW-ON) are indicated as colored vertical lines in each plot. Trial types
of selected trials in upper right panels are indicated as color (SGHF: dark blue; SGLF:
cyan; PGHF: dark green; PGLF: light green).

149

APPENDIX A. SUPPLEMENTARY DESCRIPTION OF THE REACH-TO-GRASP

EXPERIMENT

Table A.2). For details on how the offline sorting was performed and checked please

have a look at Appendix B.3 and Appendix D.4.

D Technical validation

In addition to the above described preprocessing steps that needed to be performed

to gain more content of the raw data, some technical validations of the data also had

to be conducted. These technical validations include the correction of the irregular

alignment data files of the Cerebus DAQ system and a general quality assessment of

the data. In order to validate the quality of the recording, a series of algorithms were

applied to the data. On the one hand the quality of the LFP signals was assessed

per electrode and per trial by evaluating the variance of the corresponding signal in

multiple frequency bands. On the other hand the quality of the offline sorted single

units (Appendix B.3) was determined by a signal-to-noise measure. In addition, noise

artifacts occurring simultaneously in the recorded spiking activity were detected and

marked. In the following, we explain these technical validation steps in detail.

D.1 Correction of data alignment

The ns6 file starts always 82 samples later than ns5, ns2 and nev files. This miss-

alignment is caused by an error in the Blackrock recording software. However, this shift

is correctly recorded in the ns6 file, and therefore will be automatically corrected in the

generic Neo loading routine (cf., BlackrockIO in Appendix E below). In addition, due to

the online filter procedure, the LFP signals in the ns2 file are delayed by approximately

3.6 ms with respect to the time stamps in the nev file and the analog signal of the

ns6 file. This offset was heuristically determined, documented in the metadata file,

and can be automatically corrected for by the experiment-specific loading routine (cf.,

ReachGraspIO in Appendix E below). Note that the time stamps of the spike times

provided in the nev file correspond to start of the waveform and not to the time point

of threshold crossing.

D.2 Quality assessment

The occurrence of noise in electrophysiological recordings is to a certain degree un-

avoidable and therefore needs to be carefully examined. It depends to a large extent on

the quality of the headstage used to record the neurophysiological data. In our data,

two different types of headstages were used for the two monkeys - the Samtec-CerePort

headstage (monkey L) and the Patient Cable (monkey N). The former is much more

sensitive to noise than the latter. The type of noise, its cause and appearance in the

data is quite variable. Depending on the direct influence of the different types of noise

on subsequent analysis methods, one needs to balance the corresponding data rejec-

tion between being very permissive and very conservative. For this reason, it is wise

not remove or delete data of bad quality, but instead mark them with the judgment

of a corresponding quality assessment procedure. For the here published datasets, we

150

D. TECHNICAL VALIDATION

provide the results of our quality assessment of the electrodes, trials and spiking units

along with the analysis parameters of the used procedure in the odML metadata files

for each recording. The reach-to-grasp IO integrates this information by annotating the

corresponding data objects in Neo. This approach not only allows the user to finally

decide which data to reject for an analysis, but also provides the opportunity to provide

different quality assessments of the same electrode, trial and unit at the same time.

This is helpful if one considers that certain types of noise can differently contaminate

signals in different frequency bands. For the here published datasets, the quality of the

recorded signals was therefore separately tested for the sorted spike data and different

frequency bands of the LFP data. The used corresponding procedures are described in

detail below.

D.3 LFP data quality

The LFP data were examined for noise in three broad frequency bands excluding the

50Hz European line noise (low: 3Hz - 10Hz, middle: 12Hz - 40Hz, high: 60Hz - 250Hz)

in each session individually. The goal of the quality assessment was, first, to detect

channels with a noisy signal throughout the session and, second, to detect noisy trials

in the remaining “clean” channels. To do so, the analog signals of each electrode were

first z-scored and filtered in the three frequency bands (low, middle, and high) using

a Butterworth filter (of order 2, 3, and 4, respectively). For each frequency band the

quality assessment analysis was carried out separately. The detection of noisy electrodes

was performed in three steps:

step 1 The variance of the filtered analog signal of each electrode was calculated

over the complete session.

step 2 Out of the 96 resulting variance values, outliers were identified as those values

outside a user-defined range. The range was defined as follows: (i) values between a

lower (e.g., 25th) and an upper (e.g., 75th) percentile (L and U), (ii) the range of

acceptable values was defined by L − w · (U − L), U + w · (U − L),where w is a user-

defined whisker coefficient (e.g., w=3).

step 3 The analog signals classified as outliers in step 2 were visually controlled by

comparing them to the analog signal of an electrode with a typical variance value. If

the results were either too conservative or too permissive, the detection procedure was

repeated by manually adapting the chosen parameters (L, U, and w), correspondingly.

The electrode IDs of the final outliers as well as the parameters chosen for their

detection were saved in the odML metadata file of the corresponding recording and

marked as noisy for the tested frequency band.

For the remaining non-noisy electrodes, an analogous procedure was carried out

afterwards to detect noisy trials. The procedure differed in one respect: the variance

of the filtered analog signal was calculated for each trial on each electrode separately.

At the end, the trial IDs of the identified outliers were pooled and marked as noisy for

the tested frequency band on all electrodes. The marked trial IDs were saved in the

odML metadata file of the corresponding recording together with the chosen analysis

151

APPENDIX A. SUPPLEMENTARY DESCRIPTION OF THE REACH-TO-GRASP

EXPERIMENT

parameters for their detection. Note again that with this procedure a trial is marked

as noisy on all electrodes as soon as it is classified as noisy on one electrode.

D.4 Spike data quality

To test and judge the quality of the spike data, the results of the offline spike sorting were

controlled first, for the signal-to-noise ratio (SNR) from the waveforms of the identified

single units and second, for the occurrence of hyper-synchronous event artifacts.

1. To calculate the SNR for each identified unit in the sorting results a method

introduced by Hatsopoulos, Joshi, and O’Leary (2004) was used. The SNR was de-

fined as the amplitude (A, trough-to-peak) of the mean waveform (< w >) divided by

twice the standard deviation of the waveform noise (SDnoise) of the defined unit (u):

SNRu = A<w>/SDnoise · 2,where SDnoise was computed by averaging the standard

deviations (SDs) obtained from each sample point across the original waveforms (SD

of the waveform noise adapted from Nordhausen, Maynard, and Normann (1996) and

Suner et al. (2005). For all identified single units in the datasets published here, the

determined SNRs ranged between 1.5 and 12. Corresponding to Suner et al. (2005) the

quality of the spike sorting of an identified unit is good if the SNR is above 4, is fair

if the SNR ranges between 2 and 4, and is poor if the SNR ranges between 1 and 2.

Units with an SNR below 1 are not considered as signals. For a conservative analysis

of the spike datasets, we recommend to use only single units with a SNR of 2.5 or

higher, which was our choice in e.g. Torre, Canova, et al. (2016). The results of the

SNR analysis of the performed spike sorting were saved in the odML metadata file of

the corresponding recording and units were annotated accordingly.

2. Since correlation analysis of spike data is very sensitive to cross-electrode ar-

tifacts which would produce unwanted false positive results, we controlled the sorted

spike data on their original time resolution (δ = 1/30ms) for potential occurrence of

hyper-synchronous event artifacts. For this, we computed the population histogram, i.e.

the sum of the spikes across all sorted single units in the dataset in bins of δ = 1/30ms

(sampling resolution of the data), and detected if there were entries ≥ 2. To our surprise

these hyper-synchronous spikes, which are likely to be attributed to cross-channel noise,

survived the spike sorting including the cross-channel artifact removal by the Plexon

Spike sorter. We indeed detected these spike artifacts during a preliminary analysis

of a previous study (Torre, Canova, et al., 2016). The number of single units partici-

pating in these events ranged from 2 to over 30 and a statistical analysis showed that

the frequency of their occurrence largely exceeded the expected value considering the

observed population firing rate. Furthermore, a δ-binned time histogram of the popu-

lation spiking activity triggered around the occurrence times of the hyper-synchronous

events revealed also increased spiking activity in the preceding or following bin of the

event. For a conservative analysis of the spike datasets, we recommend to treat the

spikes participating in a hyper-synchronous event as well as the spikes occurring within

a short time interval around this event (±δ) as artifacts of unknown origin and to remove

them subsequently before performing any analysis of the spike data.

152

E. USAGE NOTES

In Torre, Canova, et al. (2016) we combined both quality assessments of the spike

data and only considered spikes with a SNR>2.5 and additionally removed all hyper-

synchronous events with ≥ 2 spikes.

E Usage notes

In the following, we describe how the provided data files can be practically used in a

data analysis scenario. To this end, we first briefly present the open source software

libraries we recommend to use in order to access data and metadata using the Python

programming language. We also demonstrate how to merge data and metadata in a

common representation that facilitates data handling and analysis. Finally, we present

an example program that produces a visualization of the most important data items

contained in the files, and can be used as a template script for accessing the provided

data. All software discussed below is provided in the code subfolder of the provided

datasets, and links to the code repositories are listed in Appendix B.4.

As outlined above, the datasets are stored in two types of files. The primary data,

and the spike sorted data, are provided in the data format (in particular, the nev, ns5

and ns6 format) specified by Blackrock Microsystems, the manufacturer of the recording

hardware. Second, metadata are provided as one file in the odML format (Grewe,

Wachtler, and Benda, 2011). While data and metadata are provided in documented

file formats (see Blackrock6 and odML7, respectively), the mere knowledge of the highly

complex internal structure of the files is insufficient to practically make use of their

content. In particular, implementations of corresponding loading routines performed

from scratch by individual researchers are likely to be incoherent and error-prone. Thus,

in the following we will use two community supported open-source libraries to separately

load primary data and metadata into a generic, well-defined data representation.

We chose the data object model provided by the open-source Neo library (Chap-

ter 4) (Garcia, Guarino, et al., 2014) as the primary representation of the datasets

(Chapter 4). Neo provides a hierarchical data structure composed of Python objects

that aim to represent electrophysiological data in a generic manner. In addition, Neo

provides a number I/Os that enable the user to read from (and in part, write to) a large

number of open and vendor-specific file formats. In particular, Neo provides an I/O

module for the file format used by Blackrock Microsystems (class BlackrockIO in file

neo.io.blackrockio.py). The output of this I/O is a Neo data structure that is a faithful

representation of the contents of the primary data files. For detailed information on the

structure of the Neo data object model, please consult the online documentation8.

Here, we briefly summarize the output of the reach-to-grasp datasets obtained when

calling the I/O. The read_block method of an instantiation of the BlackrockIO returns a

Neo Block object as a top level grouping object representing one recording session. In the

hierarchy directly below the Block is one single Segment object spanning the complete

6Blackrock, http://blackrockmicro.com/
7http://www.g-node.org/projects/odml
8Neo, http://neo.readthedocs.io/en/latest/index.html

153

APPENDIX A. SUPPLEMENTARY DESCRIPTION OF THE REACH-TO-GRASP

EXPERIMENT

continuous recording, and one ChannelIndex object for each of the 96 electrodes of the

Utah Array (Fig. 2.2) and each of the 6 sensor signals monitoring the target object

manipulation (Appendix A). The data from these 102 recording channels is each saved

in one AnalogSignal object. All of these are linked to the Segment and the respective

ChannelIndex object. Likewise, the spike times (and optionally, the spike waveforms)

of each identified unit are saved to a SpikeTrain object. As for the AnalogSignal

objects, these are linked to the Segment, and to the ChannelIndex object via a Unit

object. Finally, all digital events are saved into a single Event object that lists their time

of occurrences and the corresponding event IDs. Additional information from the file

is provided as annotations on each individual Neo object (accessible via the annotation

property of the object), in particular as annotations to the top level Block object.

Note, that although this generic I/O can be used to access the raw data records, no

interpretation of the file contents is given. For example, digital events are not interpreted

as behavioral events, but only given as the raw numeric codes shown in Fig. A.2.

In order to access the metadata stored in the odML file, we use the corresponding

library API python-odML described in Grewe, Wachtler, and Benda (2011). In short,

odML files store metadata in form of hierarchically structured key-value pairs. The

odML files accompanying the provided datasets contain extensive metadata grouped

into different sections describing different aspects of the experiment. A tutorial on how

to work with the odML library can be found in the online documentation shipped with

the library, and a more detailed description of how to manage metadata by example of

the odML framework can be found in Zehl et al. (2016). In short, the library supports to

read the content of an odML file, provides an API to navigate through the hierarchical

structure, and to extract metadata of interest from the key-value pairs. Thus, the

python-odML library provides a standardized way to access stored metadata records.

As a next step, we combine the primary data and metadata in a manner that

is specific to this experiment and aids the analysis process. To this end, the relevant

metadata that were extracted from the odML are attached as annotations to data objects

in the hierarchical Neo structure. For example, metadata information for a particular

single unit originating from the spike sorting process may be attached to the Neo objects

representing the sorted spike data of that unit. The task of combining the primary data

and metadata is performed by a custom-written Python class named ReachGraspIO

that is derived as child class from Neo’s BlackrockIO class. For a full documentation

of the input arguments, methods, and outputs of this class, please refer to the class

documentation in reachgraspio.py. In short, invoking the read_block method of the

ReachGraspIO performs the following steps under the hood: (i) read the primary data

using the read_block method of the parent class (BlackrockIO) as described above, (ii)

read the metadata using the python-odML library, (iii) interpret event data based on

the digital events (e.g., detect trial start or reward), and (iv) add relevant metadata

to the Neo data object using the annotation mechanism. Thus, the Neo Block object

returned by the ReachGraspIO contains extensive information attached as annotations

of the individual Neo objects, in particular, about whether a SpikeTrain is classified

154

E. USAGE NOTES

as SUA or MUA, about the spatial positioning of electrodes, or about the identities

of electrodes that should be rejected. A full list of these metadata annotations can be

found in the documentation of the read_block method in the file reachgraspio.py.

In summary, for practical purposes, the resulting data structure of the ReachGras-

pIO hosts a complete representation of the data and a synthesis of the metadata relevant

for analysis. This representation may be saved to disk in a standardized container for-

mat (e.g., .mat or HDF5), such that the exact same data and metadata context can

also be accessed from other programming languages. For illustration, we provide the

data object in the Matlab file format (.mat) in the folder datasets_matlab, containing

Matlab structs resembling the Python Neo objects.

In the following we demonstrate how to use the ReachGraspIO in practice in order

to load and visualize the datasets. We follow the file example.py, which is contained as

part of the code included with the published datasets. The goal of this program is to

create a figure showing the raw signal, LFP, spikes (time stamps and waveforms), and

events in a time window (referred to as analysis epoch) around TS-ON of trial 1 for

electrode ID 62.

In a first step, we load the data using the ReachGraspIO. Considering that only

for monkey N an online filtered version of the LFP data is available in the ns2 file,

in the following we calculate offline an LFP signal from all raw signals contained in

the ns5 or ns6 files using a non-causal low-pass Butterworth filter implemented in the

Electrophysiology Analysis Toolkit (Elephant9, which provides analysis capabilities for

data stored in the Neo representation. The parameters of this filter are chosen identical

to those of the causal filter for the LFP recorded online in monkey N (Appendix A.2).

In a subsequent step, we extract all TS-ON events in correctly performed trials. To

this end, we use the function get_events() contained in the utility module neo_utils.py.

The function extracts a list of events contained in one Event object of the loaded Neo

Block given the filter criteria specified by the parameter event_prop. In our example,

the used filter criteria select all events from the Event object “TrialEvents” with a

trial_event_labels annotation set to TS-ON, and a performance_in_trial annotation

indicating a correct trial.

In a next step, we create Epoch objects representing analysis epochs around the

extracted TS-ON events. To this end, we use add_epochs() also contained in the utility

module neo_utils.py. The function excepts the previously extracted TS-ON events as

trigger, and defines epochs of a given duration around this trigger. The resulting Epoch

object is called “analysis_epochs”.

Next, we cut the data according to the analysis epochs and align the cutouts in time.

This operation is performed by cut_segment_by_epoch, which returns a list of Segment

objects, each containing data of one analysis epoch. The Segments are annotated by

the corresponding annotations of the Neo Epoch. In addition, the list of Segment

objects is grouped in a new Neo Block, named “data_cut_to_analysis_epochs”. This

representation now enables the analysis of the data across trials in the defined analysis

9Elephant, http://neuralensemble.org/elephant/

155

APPENDIX A. SUPPLEMENTARY DESCRIPTION OF THE REACH-TO-GRASP

EXPERIMENT

epochs.

In our example, we show how to create a plot of the data of the analysis epoch in one

behavioral trial on the selected electrode. To select the Neo Segment corresponding to

the first correct behavioral trial from the Block of the cut data obtained in the previous

step, we apply the Neo filter() function.

From the selected Segment, LFP data and raw signals can be obtained via the

AnalogSignal objects referenced by the analogsignals attribute, while spike trains and

corresponding unit waveforms can be extracted from the SpikeTrain objects referenced

by the spiketrains attribute. The remainder of example.py uses the matplotlib library

to create a figure of the data.

All data and metadata files as well as the code described above can be found in

the data repository at GIN10. The subdirectory datasets contains all data files and the

metadata odML-file for the two provided recording sessions. The subdirectory code

contains the files example.py and neo_utils.py. For further reference and inspiration

this subdirectory also contains the Python scripts generating the data figures of this

manuscript. Furthermore, the subdirectories to code contain frozen versions of the

required libraries (Neo, odML) as well as the custom loading routine combining data

and metadata (reachgraspio.py). Finally, the datasets_matlab directory contains the

annotated Neo data object containing all primary data saved in the mat-file format.

10GIN, https://web.gin.g-node.org/INT/multielectrode_grasp

156

Acknowledgements

My thanks goes to Prof. Dr Sonja Grün for providing an open and creative environment

permitting the development of this thesis.

My deepest gratitude goes to Dr. Michael Denker for sharing his excitement and

infinite motivation to pursue the rather infrastructural topics covered in this thesis.

Also I would like to thank Dr. Lyuba Zehl for frontiering these topics and laying

the foundations for me to build on.

In general I would thank all the lab members of the INM-6 who became friends dur-

ing my extended time at the INM-6. Thanks for all the fun, boring, tasty, silly, secret,

creative and cycling time you shared with me. This specially includes the openness to

provide refuge for me being stuck in Jülich or Düren.

I also would like to thank all collaborative partners of the INM-6 I had the chance

to work with. This especially includes the ComCo group in Marseille, the G-Node in

Munich and the Neo collaboration.

My thanks also goes to my current flatmates and friends with whom I also shared

very cheerful, tasty, sportive and playful times, although unfortunately I was busy way

too often.

I would also like to thank Sam, Kila and their companions, who countless times

risked their lifes for my distraction.

Last but not least I would also like to thank my family for their persistent nosiness as

well as their support in mental and physical ways. Vielen Dank für den Apfelbrei, Oma!

Financially the work presented in this thesis was partly supported by Helmholtz Portfolio “Supercom-

puting and Modeling for the Human Brain” (SMHB), EU Grants 604102, 720270 and 785907 (Human

Brain Project, HBP), Priority Program SPP 1665 of the DFG (GR1753/4-2 and DE 2175/2-1), Col-

laborative Research Agreement RIKEN-CNRS, ANR GRASP, CNRS (PEPS, Neuro_IC2010), DAAD,

LIA Vision for Action, HDS-LEE: Helmholtz School for Data Science in Life, Earth and Energy (Jülich,

Aachen, Köln) and BMBF grants 01GQ1302 and 01GQ1509.

157

158

Bibliography

Amari, Shun-Ichi et al. (Dec. 2002). “Neuroinformatics: the integration of shared databases

and tools towards integrative neuroscience”. eng. In: J. Integr. Neurosci. 1.2, pp. 117–

128. issn: 0219-6352.

Anderson, Christopher J. et al. (Mar. 2016). “Response to Comment on "Estimating the

reproducibility of psychological science"”. eng. In: Science 351.6277, p. 1037. issn:

1095-9203. doi: 10.1126/science.aad9163.

Ascoli, Giorgio A. et al. (2017). “Win-win data sharing in neuroscience”. eng. In: Nat.

Methods 14.2. Citation Key Alias: Ascoli_2017a, pp. 112–116. issn: 1548-7105. doi:

10.1038/nmeth.4152.

Askren, Mary K. et al. (2016). “Using Make for Reproducible and Parallel Neuroimaging

Workflow and Quality-Assurance”. English. In: Front. Neuroinform. 10. issn: 1662-

5196. doi: 10.3389/fninf.2016.00002. url: https://www.frontiersin.org/articles/10.

3389/fninf.2016.00002/full#B21 (visited on 08/27/2019).

Assante, Massimiliano et al. (Apr. 2016). “Are Scientific Data Repositories Coping with

Research Data Publishing?” eng. In: Data Science Journal 15.0, p. 6. issn: 1683-

1470. doi: 10.5334/dsj-2016-006. url: http://datascience.codata.org/articles/10.

5334/dsj-2016-006/ (visited on 08/02/2019).

Baker, Monya (May 2016). “1,500 scientists lift the lid on reproducibility”. en. In: Nature

News 533.7604, p. 452. doi: 10.1038/533452a. url: http://www.nature.com/news/

1-500-scientists-lift-the-lid-on-reproducibility-1.19970 (visited on 08/02/2019).

Bitzenhofer, Sebastian H. et al. (Feb. 2017). “Layer-specific optogenetic activation of

pyramidal neurons causes beta–gamma entrainment of neonatal networks”. en. In:

Nature Communications 8, p. 14563. issn: 2041-1723. doi: 10.1038/ncomms14563.

url: http://www.nature.com/ncomms/2017/170220/ncomms14563/full/ncomms14563.

html (visited on 02/24/2017).

Brochier, Thomas et al. (Apr. 2018). “Massively parallel recordings in macaque motor

cortex during an instructed delayed reach-to-grasp task”. en. In: Scientific Data 5,

p. 180055. issn: 2052-4463. doi: 10.1038/sdata.2018.55. url: https://www.nature.

com/articles/sdata201855 (visited on 04/16/2018).

Brun, Rene and Fons Rademakers (Sept. 1996). “ROOT - An Object Oriented Data

Analysis Framework”. In: Nucl. Inst. & Meth. in Phys. Res. A 389, pp. 81–86. url:

http://root.cern.ch/.

Burkholder, Tanya et al. (June 2012). “Health Evaluation of Experimental Laboratory

Mice”. In: Curr Protoc Mouse Biol 2, pp. 145–165. issn: 2161-2617. doi: 10.1002/

159

BIBLIOGRAPHY

9780470942390 .mo110217. url: https ://www.ncbi .nlm.nih .gov/pmc/articles/

PMC3399545/ (visited on 02/08/2019).

Candela, Leonardo et al. (2015). “Data journals: A survey”. en. In: Journal of the Associ-

ation for Information Science and Technology 66.9, pp. 1747–1762. issn: 2330-1643.

doi: 10.1002/asi.23358. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.

23358 (visited on 08/02/2019).

Chen, Xiaoli et al. (Feb. 2019). “Open is not enough”. En. In: Nature Physics 15.2,

p. 113. issn: 1745-2481. doi: 10 .1038/s41567- 018- 0342- 2. url: https ://www.

nature.com/articles/s41567-018-0342-2 (visited on 08/02/2019).

Cheung, Kei-Hoi et al. (July 2009). “Approaches to neuroscience data integration”. eng.

In: Brief. Bioinformatics 10.4, pp. 345–353. issn: 1477-4054. doi: 10 .1093/bib/

bbp029.

Coles, Simon, Leslie Carr, and Jeremy Frey (Apr. 2008). “Experiences with repositories

and blogs in laboratories”. en. In: url: https://eprints.soton.ac.uk/50901/ (visited

on 11/14/2018).

Corlan, Alexandru Dan (2004). Medline trend: automated yearly statistics of PubMed

results for any query. en. url: http://dan.corlan.net/medline-trend.html (visited

on 08/24/2019).

Dale, Darren (2019). Quantities Documenting. url: https://python-quantities.readthedocs.

io/en/latest/devel/documenting.html (visited on 07/09/2019).

Deisseroth, Karl and Mark J. Schnitzer (2013). “Engineering Approaches to Illuminating

Brain Structure and Dynamics.” In: Neuron 80.3, pp. 568–577. doi: 10 . 1016/ j .

neuron.2013.10.032.

Denker, Michael and Sonja Grün (2016). “Designing Workflows for the Reproducible

Analysis of Electrophysiological Data”. en. In: Brain-Inspired Computing. Ed. by

Katrin Amunts et al. Lecture Notes in Computer Science. Springer International

Publishing, pp. 58–72. isbn: 978-3-319-50862-7.

Denker, Michael, Sébastien Roux, et al. (Dec. 2011). “The Local Field Potential Reflects

Surplus Spike Synchrony”. en. In: Cereb. Cortex 21.12, pp. 2681–2695. issn: 1047-

3211, 1460-2199. doi: 10.1093/cercor/bhr040. url: http://cercor.oxfordjournals.

org/content/21/12/2681 (visited on 08/22/2014).

Denker, Michael, Lyuba Zehl, et al. (Mar. 2018). “LFP beta amplitude is linked to

mesoscopic spatio-temporal phase patterns”. en. In: Scientific Reports 8.1, pp. 1–21.

issn: 2045-2322. doi: 10.1038/s41598-018-22990-7. url: https://www.nature.com/

articles/s41598-018-22990-7 (visited on 08/05/2019).

Drummond, Chris (2009). “Replicability is not reproducibility: Nor is it good science”.

In: In Proceedings of the Evaluation Methods for Machine Learning Workshop at the

26th ICML.

Einevoll, Gaute T. et al. (Nov. 2013). “Modelling and analysis of local field potentials

for studying the function of cortical circuits”. en. In: Nature Reviews Neuroscience

14.11, pp. 770–785. issn: 1471-0048. doi: 10.1038/nrn3599. url: https://www.

nature.com/articles/nrn3599 (visited on 08/05/2019).

160

BIBLIOGRAPHY

Eisner, D.A. (Jan. 2018). “Reproducibility of science: Fraud, impact factors and careless-

ness”. In: J Mol Cell Cardiol 114, pp. 364–368. issn: 0022-2828. doi: 10.1016/j.yjmcc.

2017.10.009. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6565841/ (vis-

ited on 08/03/2019).

Ferguson, Adam R. et al. (Oct. 2014). “Big data from small data: data-sharing in the

’long tail’ of neuroscience”. en. In: Nature Neuroscience 17, pp. 1442–1447. issn:

1546-1726. doi: 10.1038/nn.3838. url: https://www.nature.com/articles/nn.3838

(visited on 08/27/2019).

Fidler, Fiona et al. (Mar. 2017). “Metaresearch for Evaluating Reproducibility in Ecol-

ogy and Evolution”. In: Bioscience 67.3, pp. 282–289. issn: 0006-3568. doi: 10.1093/

biosci/biw159. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384162/

(visited on 08/03/2019).

Foltz, Charmaine J and Mollie Ullman-Cullere (1999). “Guidelines for Assessing the

Health and Condition of Mice”. en. In: Lab Animal 28.4, p. 5.

Garcia, Samuel and Nicolas Fourcaud-Trocmé (2009). “OpenElectrophy: An Electro-

physiological Data- and Analysis-Sharing Framework”. eng. In: Front Neuroinform

3, p. 14. issn: 1662-5196. doi: 10.3389/neuro.11.014.2009.

Garcia, Samuel, Domenico Guarino, et al. (2014). “Neo: an object model for handling

electrophysiology data in multiple formats”. English. In: Front. Neuroinform. 8. issn:

1662-5196. doi: 10 . 3389/ fninf . 2014 . 00010. url: https : //www. frontiersin . org/

articles/10.3389/fninf.2014.00010/full (visited on 04/24/2019).

Geisler, Wilson S. (2008). “Visual Perception and the Statistical Properties of Natural

Scenes”. In: Annu. Rev. Psychol. 59.1, pp. 167–192. issn: 1545-2085. doi: 10.1146/

annurev.psych.58.110405.085632.

Goodman, Steven and Sander Greenland (Apr. 2007). “Why most published research

findings are false: problems in the analysis”. eng. In: PLoS Med. 4.4, e168. issn:

1549-1676. doi: 10.1371/journal.pmed.0040168.

Gorgolewski, Krzysztof J. et al. (June 2016). “The brain imaging data structure, a

format for organizing and describing outputs of neuroimaging experiments”. eng. In:

Sci Data 3, p. 160044. issn: 2052-4463. doi: 10.1038/sdata.2016.44.

Grewe, Jan, Thomas Wachtler, and Jan Benda (2011). “A Bottom-up Approach to

Data Annotation in Neurophysiology”. English. In: Front. Neuroinform. 5. issn:

1662-5196. doi: 10 . 3389/ fninf . 2011 . 00016. url: https : //www. frontiersin . org/

articles/10.3389/fninf.2011.00016/full (visited on 03/15/2019).

Haan, Marcel Jan de (2018). “Cortical network dynamics during visually-guided motor

behavior : Setup development and Preliminary analyses”. en. PhD thesis. Disserta-

tion, RWTH Aachen University, 2018. doi: 10.18154/RWTH-2018-221368. url:

https://publications.rwth-aachen.de/record/717863 (visited on 08/18/2019).

Haan, Marcel Jan de et al. (May 2018). “Real-time visuomotor behavior and electro-

physiology recording setup for use with humans and monkeys”. In: Journal of Neu-

rophysiology 120.2, pp. 539–552. issn: 0022-3077. doi: 10 . 1152 / jn . 00262 . 2017.

161

BIBLIOGRAPHY

url: https ://www.physiology.org/doi/ full/10 .1152/jn .00262 .2017 (visited on

08/18/2019).

Hatsopoulos, Nicholas, Jignesh Joshi, and John G. O’Leary (Aug. 2004). “Decoding

Continuous and Discrete Motor Behaviors Using Motor and Premotor Cortical En-

sembles”. In: Journal of Neurophysiology 92.2, pp. 1165–1174. issn: 0022-3077. doi:

10.1152/jn.01245.2003. url: https://www.physiology.org/doi/full/10.1152/jn.

01245.2003 (visited on 08/06/2019).

Hazan, Lynn, Michaël Zugaro, and György Buzsáki (Sept. 2006). “Klusters, NeuroScope,

NDManager: A free software suite for neurophysiological data processing and visu-

alization”. In: Journal of Neuroscience Methods 155.2, pp. 207–216. issn: 0165-0270.

doi: 10.1016/j.jneumeth.2006.01.017. url: http://www.sciencedirect.com/science/

article/pii/S0165027006000410 (visited on 07/29/2019).

Hunter, John D. (2007). “Matplotlib: A 2D Graphics Environment”. In: Comput. Sci.

Eng. 9.3, pp. 90–95. issn: 1521-9615. doi: 10 .1109/MCSE.2007 .55. url: http :

//ieeexplore.ieee.org/document/4160265/ (visited on 07/09/2019).

Ioannidis, John P. A. (Aug. 2005). “Why most published research findings are false”.

eng. In: PLoS Med. 2.8, e124. issn: 1549-1676. doi: 10.1371/journal.pmed.0020124.

— (June 2007). “Why most published research findings are false: author’s reply to

Goodman and Greenland”. eng. In: PLoS Med. 4.6, e215. issn: 1549-1676. doi:

10.1371/journal.pmed.0040215.

Jacob, Vincent et al. (May 2010). “The Matrix: A New Tool for Probing the Whisker-

to-Barrel System with Natural Stimuli”. en. In: Journal of Neuroscience Methods

189.1, pp. 65–74. issn: 01650270. doi: 10.1016/j.jneumeth.2010.03.020. url: https:

//linkinghub.elsevier.com/retrieve/pii/S0165027010001548 (visited on 02/28/2019).

Jomhari, Nur Zulaiha, Achim Geiser, and Afiq Aizuddin Bin Anuar (2017). Higgs-to-

four-lepton analysis example using 2011-2012 data. doi: 10.7483/opendata.cms.

jkb8.rr42. url: http://opendata.cern.ch/record/5500 (visited on 08/03/2019).

Jun, James J. et al. (Nov. 2017). “Fully integrated silicon probes for high-density record-

ing of neural activity”. en. In: Nature 551.7679, pp. 232–236. issn: 1476-4687. doi:

10.1038/nature24636. url: https://www.nature.com/articles/nature24636 (visited

on 08/05/2019).

Kanza, Samantha et al. (Dec. 2017). “Electronic Lab Notebooks: Can They Replace

Paper?” en. In: Journal of Cheminformatics 9.1. issn: 1758-2946. doi: 10 .1186/

s13321- 017- 0221- 3. url: http ://jcheminf . springeropen.com/articles/10 .1186/

s13321-017-0221-3 (visited on 12/18/2018).

Kelly, Ryan C. et al. (Jan. 2007). “Comparison of recordings from microelectrode arrays

and single electrodes in visual cortex”. In: J Neurosci 27.2, pp. 261–264. issn: 0270-

6474. doi: 10.1523/JNEUROSCI.4906-06.2007. url: https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC3039847/ (visited on 07/19/2019).

Köster, Johannes and Sven Rahmann (Oct. 2012). “Snakemake—a scalable bioinfor-

matics workflow engine”. en. In: Bioinformatics 28.19, pp. 2520–2522. issn: 1367-

162

BIBLIOGRAPHY

4803. doi: 10 . 1093 / bioinformatics / bts480. url: https : / / academic . oup . com /

bioinformatics/article/28/19/2520/290322 (visited on 08/29/2019).

Kwok, Roberta and S Kanza (2018). “Lab Notebooks Go Digital”. en. In: Nature 560,

p. 269.

Lefebvre, Baptiste, Pierre Yger, and Olivier Marre (2016). “Recent progress in multi-

electrode spike sorting methods”. eng. In: J. Physiol. Paris 110.4 Pt A, pp. 327–335.

issn: 1769-7115. doi: 10.1016/j.jphysparis.2017.02.005.

Logothetis, Nikos K. and Brian A. Wandell (2004). “Interpreting the BOLD Signal”. In:

Annual Review of Physiology 66.1, pp. 735–769. doi: 10.1146/annurev.physiol.66.

082602.092845. url: https://doi.org/10.1146/annurev.physiol.66.082602.092845

(visited on 08/05/2019).

Maldonado, P. et al. (2008). “Synchronization of Neuronal Responses in Primary Visual

Cortex of Monkeys Viewing Natural Images”. In: Journal of Neurophysiology 100.3,

pp. 1523–1532. issn: 1522-1598. doi: 10.1152/jn.00076.2008.

Martin, Robert C. (Aug. 2008). Clean Code: A Handbook of Agile Software Craftsman-

ship. English. 1 edition. Upper Saddle River, NJ: Prentice Hall. isbn: 978-0-13-

235088-4.

Mitzdorf, U. (Jan. 1985). “Current source-density method and application in cat cerebral

cortex: investigation of evoked potentials and EEG phenomena”. In: Physiological

Reviews 65.1, pp. 37–100. issn: 0031-9333. doi: 10.1152/physrev.1985.65.1.37. url:

https://www.physiology.org/doi/abs/10.1152/physrev.1985.65.1.37 (visited on

08/05/2019).

Miyamoto, Daisuke and Masanori Murayama (2015). “The Fiber-Optic Imaging and Ma-

nipulation of Neural Activity during Animal Behavior”. In: Neuroscience Research.

issn: 0168-0102. doi: 10.1016/j.neures.2015.09.004.

Mouček, Roman et al. (2014). “Software and hardware infrastructure for research in

electrophysiology”. English. In: Front. Neuroinform. 8. issn: 1662-5196. doi: 10 .

3389/fninf.2014.00020. url: https://www.frontiersin.org/articles/10.3389/fninf.

2014.00020/full (visited on 01/23/2019).

Nichols, B. Nolan and Kilian M. Pohl (Sept. 2015). “Neuroinformatics Software Ap-

plications Supporting Electronic Data Capture, Management, and Sharing for the

Neuroimaging Community”. eng. In: Neuropsychol Rev 25.3, pp. 356–368. issn: 1573-

6660. doi: 10.1007/s11065-015-9293-x.

Nicolelis, Miguel A L. and Sidarta Ribeiro (2002). “Multielectrode Recordings: The next

Steps.” In: Curr Opin Neurobiol 12.5, pp. 602–606. doi: 10.1016/S0959-4388(02)

00374-4.

Nordhausen, Craig T., Edwin M. Maynard, and Richard A. Normann (July 1996).

“Single unit recording capabilities of a 100 microelectrode array”. In: Brain Research

726.1, pp. 129–140. issn: 0006-8993. doi: 10 .1016/0006- 8993(96)00321- 6. url:

http://www.sciencedirect.com/science/article/pii/0006899396003216 (visited on

08/06/2019).

163

BIBLIOGRAPHY

Obien, Marie Engelene J. et al. (2014). “Revealing neuronal function through microelec-

trode array recordings.” In: Front Neurosci 8, p. 423. doi: 10.3389/fnins.2014.00423.

url: http://dx.doi.org/10.3389/fnins.2014.00423.

Ohl, F. W., H. Scheich, and W. J. Freeman (Aug. 2001). “Change in pattern of ongoing

cortical activity with auditory category learning”. en. In: Nature 412.6848, pp. 733–

736. issn: 1476-4687. doi: 10 . 1038/35089076. url: https : //www.nature . com/

articles/35089076 (visited on 03/15/2019).

Okonechnikov, Konstantin, Olga Golosova, and Mikhail Fursov (Apr. 2012). “Unipro

UGENE: a unified bioinformatics toolkit”. en. In: Bioinformatics 28.8, pp. 1166–

1167. issn: 1367-4803. doi: 10.1093/bioinformatics/bts091. url: https://academic.

oup.com/bioinformatics/article/28/8/1166/195474 (visited on 08/16/2019).

Open Science Collaboration (Aug. 2015). “PSYCHOLOGY. Estimating the reproducibil-

ity of psychological science”. eng. In: Science 349.6251, aac4716. issn: 1095-9203.

doi: 10.1126/science.aac4716.

Palm, Christoph et al. (2010). “Towards ultra-high resolution fibre tract mapping of

the human brain - registration of polarised light images and reorientation of fibre

vectors”. English. In: Front. Hum. Neurosci. 4. issn: 1662-5161. doi: 10.3389/neuro.

09.009.2010. url: https://www.frontiersin.org/articles/10.3389/neuro.09.009.2010/

full (visited on 08/18/2019).

Parekh, Ruchi, Rubén Armañanzas, and Giorgio A. Ascoli (Apr. 2015). “The importance

of metadata to assess information content in digital reconstructions of neuronal

morphology”. eng. In: Cell Tissue Res. 360.1, pp. 121–127. issn: 1432-0878. doi:

10.1007/s00441-014-2103-6.

Pashler, Harold and Eric–Jan Wagenmakers (Nov. 2012). “Editors’ Introduction to the

Special Section on Replicability in Psychological Science: A Crisis of Confidence?”

en. In: Perspect Psychol Sci 7.6, pp. 528–530. issn: 1745-6916. doi: 10 . 1177 /

1745691612465253. url: https://doi.org/10.1177/1745691612465253 (visited on

08/03/2019).

PEP 8 – Style Guide for Python Code (2019). en. url: https://www.python.org/dev/

peps/pep-0008/ (visited on 07/04/2019).

Plesser, Hans E. (2018). “Reproducibility vs. Replicability: A Brief History of a Confused

Terminology”. English. In: Front. Neuroinform. 11. issn: 1662-5196. doi: 10.3389/

fninf.2017.00076. url: https://www.frontiersin.org/articles/10.3389/fninf.2017.

00076/full (visited on 06/13/2018).

Quaglio, Pietro, Vahid Rostami, et al. (Apr. 2018). “Methods for identification of spike

patterns in massively parallel spike trains”. en. In: Biol Cybern 112.1, pp. 57–80. issn:

1432-0770. doi: 10.1007/s00422-018-0755-0. url: https://doi.org/10.1007/s00422-

018-0755-0 (visited on 08/05/2019).

Quaglio, Pietro, Alper Yegenoglu, et al. (2017). “Detection and Evaluation of Spatio-

Temporal Spike Patterns in Massively Parallel Spike Train Data with SPADE”.

English. In: Front. Comput. Neurosci. 11. issn: 1662-5188. doi: 10.3389/fncom.2017.

164

BIBLIOGRAPHY

00041. url: https://www.frontiersin.org/articles/10.3389/fncom.2017.00041/full

(visited on 06/08/2019).

Ray, Subhasis et al. (Apr. 2016). “NSDF: Neuroscience Simulation Data Format”. en. In:

Neuroinform 14.2, pp. 147–167. issn: 1559-0089. doi: 10.1007/s12021-015-9282-5.

url: https://doi.org/10.1007/s12021-015-9282-5 (visited on 07/29/2019).

Rey, Hernan Gonzalo, Carlos Pedreira, and Rodrigo Quian Quiroga (Oct. 2015). “Past,

present and future of spike sorting techniques”. eng. In: Brain Res. Bull. 119.Pt B,

pp. 106–117. issn: 1873-2747. doi: 10.1016/j.brainresbull.2015.04.007.

Riehle, Alexa et al. (2013). “Mapping the spatio-temporal structure of motor cortical

LFP and spiking activities during reach-to-grasp movements.” In: Front Neural Cir-

cuits 7, p. 48. doi: 10.3389/fncir.2013.00048. url: http://dx.doi.org/10.3389/fncir.

2013.00048.

Rostami, Vahid et al. (May 2017). “[Re] Spike Synchronization and Rate Modulation

Differentially Involved in Motor Cortical Function”. Python. In: ReScience 3.1, p. 3.

doi: 10 . 5281 / zenodo . 583814. url: https : / / github . com/ReScience - Archives /

Rostami-Ito-Denker-Gruen-2017/blob/master/article/Rostami-Ito-Denker-Gruen-

2017.pdf.

Rubacha, Michael, Anil K. Rattan, and Stephen C. Hosselet (Feb. 2011). “A Review of

Electronic Laboratory Notebooks Available in the Market Today”. en. In: Journal of

Laboratory Automation 16.1, pp. 90–98. issn: 22110682. doi: 10.1016/j.jala.2009.

01.002. url: http://journals.sagepub.com/doi/10.1016/j.jala.2009.01.002 (visited

on 12/18/2018).

Rübel, Oliver et al. (Jan. 2019). “NWB:N 2.0: An Accessible Data Standard for Neu-

rophysiology”. en. In: bioRxiv, p. 523035. doi: 10.1101/523035. url: https://www.

biorxiv.org/content/10.1101/523035v1 (visited on 08/28/2019).

Runnarong, Nuttakarn et al. (2019). “Age-related changes in reach-to-grasp movements

with partial visual occlusion”. eng. In: PLoS ONE 14.8, e0221320. issn: 1932-6203.

doi: 10.1371/journal.pone.0221320.

Savage, Caroline J. and Andrew J. Vickers (Sept. 2009). “Empirical Study of Data

Sharing by Authors Publishing in PLoS Journals”. en. In: PLOS ONE 4.9, e7078.

issn: 1932-6203. doi: 10.1371/journal.pone.0007078. url: https://journals.plos.

org/plosone/article?id=10.1371/journal.pone.0007078 (visited on 08/02/2019).

Schwarz, David A. et al. (June 2014). “Chronic, wireless recordings of large-scale brain

activity in freely moving rhesus monkeys”. en. In: Nat Meth 11.6, pp. 670–676. issn:

1548-7091. doi: 10 . 1038/nmeth . 2936. url: http : / /www .nature . com/nmeth/

journal/v11/n6/full/nmeth.2936.html (visited on 04/19/2017).

Seo, Dongjin et al. (Apr. 2015). “Model validation of untethered, ultrasonic neural dust

motes for cortical recording”. eng. In: J. Neurosci. Methods 244, pp. 114–122. issn:

1872-678X. doi: 10.1016/j.jneumeth.2014.07.025.

Shew, Woodrow L., Timothy Bellay, and Dietmar Plenz (Sept. 2010). “Simultaneous

multi-electrode array recording and two-photon calcium imaging of neural activity”.

In: J Neurosci Methods 192.1, pp. 75–82. issn: 0165-0270. doi: 10.1016/j.jneumeth.

165

BIBLIOGRAPHY

2010.07.023. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2934901/

(visited on 07/19/2019).

Shore, James and Shane Warden (Nov. 2007). The Art of Agile Development: Pragmatic

Guide to Agile Software Development. English. 1 edition. Beijing : Sebastopol, CA:

O’Reilly Media. isbn: 978-0-596-52767-9.

Siegle, Joshua H. et al. (June 2017). “Open Ephys: an open-source, plugin-based plat-

form for multichannel electrophysiology”. en. In: J. Neural Eng. 14.4, p. 045003. issn:

1741-2552. doi: 10.1088/1741-2552/aa5eea. url: https://doi.org/10.1088%2F1741-

2552%2Faa5eea (visited on 08/30/2019).

Smeets, Jeroen B. J., Katinka van der Kooij, and Eli Brenner (July 2019). “A review

of grasping as the movements of digits in space”. eng. In: J. Neurophysiol. issn:

1522-1598. doi: 10.1152/jn.00123.2019.

Sprenger, Julia (2014). “Spatial Dependence of the Spike-Related Component of the

Local Field Potential in Motor Cortex”. English. PhD thesis.

Sprenger, Julia et al. (2019). “odMLtables: A User-Friendly Approach for Managing

Metadata of Neurophysiological Experiments”. In: Frontiers in Neuroinformatics

13, p. 62. issn: 1662-5196. doi: 10 .3389/ fninf .2019 .00062. url: https ://www.

frontiersin.org/article/10.3389/fninf.2019.00062.

Stoewer, Adrian et al. (2014). “File format and library for neuroscience data and meta-

data”. In: Frontiers in Neuroinformatics 27. issn: 1662-5196. doi: 10.3389/conf.

fninf.2014.18.00027. url: http://www.frontiersin.org/neuroinformatics/10.3389/

conf.fninf.2014.18.00027/full.

Sukiban, Jeyathevy et al. (July 2019). “Evaluation of Spike Sorting Algorithms: Appli-

cation to Human Subthalamic Nucleus Recordings and Simulations”. eng. In: Neuro-

science 414, pp. 168–185. issn: 1873-7544. doi: 10.1016/j.neuroscience.2019.07.005.

Suner, S. et al. (Dec. 2005). “Reliability of signals from a chronically implanted, silicon-

based electrode array in non-human primate primary motor cortex”. In: IEEE Trans-

actions on Neural Systems and Rehabilitation Engineering 13.4, pp. 524–541. issn:

1534-4320. doi: 10.1109/TNSRE.2005.857687.

Tebaykin, Dmitry et al. (2017). “Modeling sources of interlaboratory variability in elec-

trophysiological properties of mammalian neurons”. In: Journal of Neurophysiology

119.4, pp. 1329–1339. doi: 10.1152/jn.00604.2017. url: https://doi.org/10.1152/

jn.00604.2017.

Teeters, Jeffery L. et al. (2015). “Neurodata Without Borders: Creating a Common Data

Format for Neurophysiology”. In: Neuron 88.4, pp. 629–634. issn: 0896-6273. doi:

https://doi.org/10.1016/j.neuron.2015.10.025. url: http://www.sciencedirect.com/

science/article/pii/S0896627315009198.

The HDF Group (1997). Hierarchical Data Format, version 5.

Torre, Emiliano, Carlos Canova, et al. (July 2016). “ASSET: Analysis of Sequences of

Synchronous Events in Massively Parallel Spike Trains”. en. In: PLOS Computational

Biology 12.7, e1004939. issn: 1553-7358. doi: 10.1371/journal.pcbi.1004939. url:

166

BIBLIOGRAPHY

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004939

(visited on 08/05/2019).

Torre, Emiliano, Pietro Quaglio, et al. (Aug. 2016). “Synchronous Spike Patterns in

Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task”. en. In: J.

Neurosci. 36.32, pp. 8329–8340. issn: 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.

4375-15.2016. url: https://www.jneurosci.org/content/36/32/8329 (visited on

08/05/2019).

Unakafova, Valentina A. and Alexander Gail (Apr. 2019). “Comparing open-source tool-

boxes for processing and analysis of spike and local field potentials data”. en. In:

bioRxiv, p. 600486. doi: 10.1101/600486. url: https://www.biorxiv.org/content/

10.1101/600486v2 (visited on 08/03/2019).

Vargas-Irwin, C. E. et al. (2010). “Decoding Complete Reach and Grasp Actions from

Local Primary Motor Cortex Populations”. In: Journal of Neuroscience 30.29, pp. 9659–

9669. issn: 1529-2401. doi: 10.1523/jneurosci.5443-09.2010.

Verkhratsky, Alexei, O. A. Krishtal, and Ole H. Petersen (2006). “From Galvani to Patch

Clamp: The Development of Electrophysiology.” In: Pflugers Arch 453.3, pp. 233–

247. doi: 10.1007/s00424-006-0169-z.

Vines, Timothy H. et al. (Jan. 2013). “Mandated data archiving greatly improves access

to research data”. In: The FASEB Journal 27.4, pp. 1304–1308. issn: 0892-6638. doi:

10.1096/fj.12-218164. url: https://www.fasebj.org/doi/full/10.1096/fj.12-218164

(visited on 08/02/2019).

Walt, Stéfan van der, S. Chris Colbert, and Gaël Varoquaux (2011). “The NumPy

Array: A Structure for Efficient Numerical Computation”. In: Computing in Science

& Engineering 13.2, pp. 22–30. doi: http://dx.doi.org/10.1109/MCSE.2011.37. url:

http://scitation.aip.org/content/aip/journal/cise/13/2/10.1109/MCSE.2011.37.

Wilkinson, Mark D. et al. (Mar. 2016). “The FAIR Guiding Principles for scientific data

management and stewardship”. en. In: Scientific Data 3, p. 160018. issn: 2052-4463.

doi: 10.1038/sdata.2016.18. url: https://www.nature.com/articles/sdata201618

(visited on 08/02/2019).

Yatsenko, Dimitri et al. (Nov. 2015). “DataJoint: Managing Big Scientific Data Using

MATLAB or Python”. In: bioRxiv. doi: 10.1101/031658. url: http://biorxiv.org/

lookup/doi/10.1101/031658 (visited on 01/23/2019).

Yeung, Andy W. K. (2017). “Do Neuroscience Journals Accept Replications? A Survey

of Literature”. English. In: Front. Hum. Neurosci. 11. issn: 1662-5161. doi: 10.3389/

fnhum.2017.00468. url: https://www.frontiersin.org/articles/10.3389/fnhum.2017.

00468/full (visited on 08/03/2019).

Yu, Byron M. et al. (July 2009). “Gaussian-Process Factor Analysis for Low-Dimensional

Single-Trial Analysis of Neural Population Activity”. In: J Neurophysiol 102.1, pp. 614–

635. issn: 0022-3077. doi: 10.1152/jn.90941.2008. url: https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC2712272/ (visited on 08/05/2019).

Zehl, Lyuba (2018). Management of Electrophysiological Data & Metadata - Making

complex experiments accessible to yourself and others. Schriften des Forschungszen-

167

BIBLIOGRAPHY

trums Jülich Reihe Schlüsseltechnologien / Key Technologies 167. Jülich. isbn: 978-

3-95806-311-2.

Zehl, Lyuba et al. (2016). “Handling Metadata in a Neurophysiology Laboratory”. En-

glish. In: Front. Neuroinform. 10. issn: 1662-5196. doi: 10.3389/fninf.2016.00026.

url: https://www.frontiersin.org/articles/10.3389/fninf.2016.00026/full (visited on

01/11/2019).

Zhang, Bo, Ji Dai, and Tao Zhang (Nov. 2017). “NeoAnalysis: a Python-based toolbox

for quick electrophysiological data processing and analysis”. In: BioMedical Engi-

neering OnLine 16.1, p. 129. issn: 1475-925X. doi: 10.1186/s12938-017-0419-7.

url: https://doi.org/10.1186/s12938-017-0419-7 (visited on 07/04/2019).

168

Schlüsseltechnologien / Key Technologies

Band / Volume 222

ISBN 978-3-95806-478-2

S
c

h
lü

s
s

e
lt

e
c

h
n

o
lo

g
ie

n

