000877851 001__ 877851
000877851 005__ 20240712084520.0
000877851 0247_ $$2doi$$a10.1515/zpch-2019-1483
000877851 0247_ $$2ISSN$$a0044-3336
000877851 0247_ $$2ISSN$$a0372-8501
000877851 0247_ $$2ISSN$$a0372-9656
000877851 0247_ $$2ISSN$$a0372-9664
000877851 0247_ $$2ISSN$$a0942-9352
000877851 0247_ $$2ISSN$$a2196-7156
000877851 0247_ $$2Handle$$a2128/26683
000877851 0247_ $$2WOS$$aWOS:000542554000006
000877851 037__ $$aFZJ-2020-02475
000877851 082__ $$a540
000877851 1001_ $$0P:(DE-HGF)0$$aCottre, Thorsten$$b0
000877851 245__ $$aIntegrated Devices for Photoelectrochemical Water Splitting Using Adapted Silicon Based Multi-Junction Solar Cells Protected by ALD TiO2 Coatings
000877851 260__ $$aBerlin$$bDe Gruyter$$c2020
000877851 3367_ $$2DRIVER$$aarticle
000877851 3367_ $$2DataCite$$aOutput Types/Journal article
000877851 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610213679_28620
000877851 3367_ $$2BibTeX$$aARTICLE
000877851 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877851 3367_ $$00$$2EndNote$$aJournal Article
000877851 520__ $$aIn this study, we present different silicon based integrated devices for photoelectrochemical water splitting, which provide enough photovoltage to drive the reaction without an external bias. Thin films of titanium dioxide, prepared by atomic layer deposition (ALD), are applied as a surface passivation and corrosion protection. The interfaces between the multi-junction cells and the protective coating were optimized individually by etching techniques and finding optimal parameters for the ALD process. The energy band alignment of the systems was studied by X-ray photoelectron spectroscopy (XPS). Electrochemically deposited platinum particles were used to reduce the HER overpotential. The prepared systems were tested in a three-electrode arrangement under AM 1.5 illumination in 0.1 M KOH. In final tests the efficiency and stability of the prepared devices were tested in a two-electrode arrangement in dependence of the pH value with a ruthenium-iridium oxide counter electrode. For the tandem-junction device solar to hydrogen efficiencies (STH) up to 1.8% were reached, and the triple-junction device showed a maximum efficiency of 4.4%.
000877851 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000877851 588__ $$aDataset connected to CrossRef
000877851 7001_ $$0P:(DE-Juel1)167359$$aWelter, Katharina$$b1
000877851 7001_ $$0P:(DE-HGF)0$$aRonge, Emanuel$$b2
000877851 7001_ $$0P:(DE-Juel1)130297$$aSmirnov, Vladimir$$b3
000877851 7001_ $$0P:(DE-Juel1)130238$$aFinger, Friedhelm$$b4
000877851 7001_ $$0P:(DE-HGF)0$$aJooss, Christian$$b5
000877851 7001_ $$0P:(DE-HGF)0$$aKaiser, Bernhard$$b6$$eCorresponding author
000877851 7001_ $$0P:(DE-HGF)0$$aJaegermann, Wolfram$$b7
000877851 773__ $$0PERI:(DE-600)2020854-6$$a10.1515/zpch-2019-1483$$gVol. 0, no. 0$$n6$$p1155–1169$$tZeitschrift für physikalische Chemie$$v234$$x2196-7156$$y2020
000877851 8564_ $$uhttps://juser.fz-juelich.de/record/877851/files/%5B21967156%20-%20Zeitschrift%20f%C3%BCr%20Physikalische%20Chemie%5D%20Integrated%20Devices%20for%20Photoelectrochemical%20Water%20Splitting%20Using%20Adapted%20Silicon%20Based%20Multi-Junction%20Solar%20Cells%20Protected%20by%20ALD%20TiO2%20Coatings-1.pdf$$yOpenAccess
000877851 8564_ $$uhttps://juser.fz-juelich.de/record/877851/files/Cottre%20et%20al_.pdf$$yOpenAccess
000877851 8564_ $$uhttps://juser.fz-juelich.de/record/877851/files/Cottre%20et%20al_.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877851 909CO $$ooai:juser.fz-juelich.de:877851$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167359$$aForschungszentrum Jülich$$b1$$kFZJ
000877851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130297$$aForschungszentrum Jülich$$b3$$kFZJ
000877851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130238$$aForschungszentrum Jülich$$b4$$kFZJ
000877851 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000877851 9141_ $$y2020
000877851 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000877851 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000877851 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877851 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bZ PHYS CHEM : 2018$$d2020-01-16
000877851 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000877851 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000877851 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000877851 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000877851 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877851 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16
000877851 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000877851 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000877851 920__ $$lyes
000877851 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000877851 9801_ $$aFullTexts
000877851 980__ $$ajournal
000877851 980__ $$aVDB
000877851 980__ $$aUNRESTRICTED
000877851 980__ $$aI:(DE-Juel1)IEK-5-20101013
000877851 981__ $$aI:(DE-Juel1)IMD-3-20101013