Home > Publications database > Integrated Devices for Photoelectrochemical Water Splitting Using Adapted Silicon Based Multi-Junction Solar Cells Protected by ALD TiO2 Coatings > print |
001 | 877851 | ||
005 | 20240712084520.0 | ||
024 | 7 | _ | |a 10.1515/zpch-2019-1483 |2 doi |
024 | 7 | _ | |a 0044-3336 |2 ISSN |
024 | 7 | _ | |a 0372-8501 |2 ISSN |
024 | 7 | _ | |a 0372-9656 |2 ISSN |
024 | 7 | _ | |a 0372-9664 |2 ISSN |
024 | 7 | _ | |a 0942-9352 |2 ISSN |
024 | 7 | _ | |a 2196-7156 |2 ISSN |
024 | 7 | _ | |a 2128/26683 |2 Handle |
024 | 7 | _ | |a WOS:000542554000006 |2 WOS |
037 | _ | _ | |a FZJ-2020-02475 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Cottre, Thorsten |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Integrated Devices for Photoelectrochemical Water Splitting Using Adapted Silicon Based Multi-Junction Solar Cells Protected by ALD TiO2 Coatings |
260 | _ | _ | |a Berlin |c 2020 |b De Gruyter |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1610213679_28620 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In this study, we present different silicon based integrated devices for photoelectrochemical water splitting, which provide enough photovoltage to drive the reaction without an external bias. Thin films of titanium dioxide, prepared by atomic layer deposition (ALD), are applied as a surface passivation and corrosion protection. The interfaces between the multi-junction cells and the protective coating were optimized individually by etching techniques and finding optimal parameters for the ALD process. The energy band alignment of the systems was studied by X-ray photoelectron spectroscopy (XPS). Electrochemically deposited platinum particles were used to reduce the HER overpotential. The prepared systems were tested in a three-electrode arrangement under AM 1.5 illumination in 0.1 M KOH. In final tests the efficiency and stability of the prepared devices were tested in a two-electrode arrangement in dependence of the pH value with a ruthenium-iridium oxide counter electrode. For the tandem-junction device solar to hydrogen efficiencies (STH) up to 1.8% were reached, and the triple-junction device showed a maximum efficiency of 4.4%. |
536 | _ | _ | |a 121 - Solar cells of the next generation (POF3-121) |0 G:(DE-HGF)POF3-121 |c POF3-121 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Welter, Katharina |0 P:(DE-Juel1)167359 |b 1 |
700 | 1 | _ | |a Ronge, Emanuel |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Smirnov, Vladimir |0 P:(DE-Juel1)130297 |b 3 |
700 | 1 | _ | |a Finger, Friedhelm |0 P:(DE-Juel1)130238 |b 4 |
700 | 1 | _ | |a Jooss, Christian |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Kaiser, Bernhard |0 P:(DE-HGF)0 |b 6 |e Corresponding author |
700 | 1 | _ | |a Jaegermann, Wolfram |0 P:(DE-HGF)0 |b 7 |
773 | _ | _ | |a 10.1515/zpch-2019-1483 |g Vol. 0, no. 0 |0 PERI:(DE-600)2020854-6 |n 6 |p 1155–1169 |t Zeitschrift für physikalische Chemie |v 234 |y 2020 |x 2196-7156 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/877851/files/%5B21967156%20-%20Zeitschrift%20f%C3%BCr%20Physikalische%20Chemie%5D%20Integrated%20Devices%20for%20Photoelectrochemical%20Water%20Splitting%20Using%20Adapted%20Silicon%20Based%20Multi-Junction%20Solar%20Cells%20Protected%20by%20ALD%20TiO2%20Coatings-1.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/877851/files/Cottre%20et%20al_.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/877851/files/Cottre%20et%20al_.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:877851 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)167359 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130297 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130238 |
913 | 1 | _ | |a DE-HGF |b Energie |l Erneuerbare Energien |1 G:(DE-HGF)POF3-120 |0 G:(DE-HGF)POF3-121 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Solar cells of the next generation |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-16 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b Z PHYS CHEM : 2018 |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-16 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-16 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-16 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-16 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-16 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|