001     877851
005     20240712084520.0
024 7 _ |a 10.1515/zpch-2019-1483
|2 doi
024 7 _ |a 0044-3336
|2 ISSN
024 7 _ |a 0372-8501
|2 ISSN
024 7 _ |a 0372-9656
|2 ISSN
024 7 _ |a 0372-9664
|2 ISSN
024 7 _ |a 0942-9352
|2 ISSN
024 7 _ |a 2196-7156
|2 ISSN
024 7 _ |a 2128/26683
|2 Handle
024 7 _ |a WOS:000542554000006
|2 WOS
037 _ _ |a FZJ-2020-02475
082 _ _ |a 540
100 1 _ |a Cottre, Thorsten
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Integrated Devices for Photoelectrochemical Water Splitting Using Adapted Silicon Based Multi-Junction Solar Cells Protected by ALD TiO2 Coatings
260 _ _ |a Berlin
|c 2020
|b ˜Deœ Gruyter
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1610213679_28620
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this study, we present different silicon based integrated devices for photoelectrochemical water splitting, which provide enough photovoltage to drive the reaction without an external bias. Thin films of titanium dioxide, prepared by atomic layer deposition (ALD), are applied as a surface passivation and corrosion protection. The interfaces between the multi-junction cells and the protective coating were optimized individually by etching techniques and finding optimal parameters for the ALD process. The energy band alignment of the systems was studied by X-ray photoelectron spectroscopy (XPS). Electrochemically deposited platinum particles were used to reduce the HER overpotential. The prepared systems were tested in a three-electrode arrangement under AM 1.5 illumination in 0.1 M KOH. In final tests the efficiency and stability of the prepared devices were tested in a two-electrode arrangement in dependence of the pH value with a ruthenium-iridium oxide counter electrode. For the tandem-junction device solar to hydrogen efficiencies (STH) up to 1.8% were reached, and the triple-junction device showed a maximum efficiency of 4.4%.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Welter, Katharina
|0 P:(DE-Juel1)167359
|b 1
700 1 _ |a Ronge, Emanuel
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Smirnov, Vladimir
|0 P:(DE-Juel1)130297
|b 3
700 1 _ |a Finger, Friedhelm
|0 P:(DE-Juel1)130238
|b 4
700 1 _ |a Jooss, Christian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kaiser, Bernhard
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
700 1 _ |a Jaegermann, Wolfram
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1515/zpch-2019-1483
|g Vol. 0, no. 0
|0 PERI:(DE-600)2020854-6
|n 6
|p 1155–1169
|t Zeitschrift für physikalische Chemie
|v 234
|y 2020
|x 2196-7156
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/877851/files/%5B21967156%20-%20Zeitschrift%20f%C3%BCr%20Physikalische%20Chemie%5D%20Integrated%20Devices%20for%20Photoelectrochemical%20Water%20Splitting%20Using%20Adapted%20Silicon%20Based%20Multi-Junction%20Solar%20Cells%20Protected%20by%20ALD%20TiO2%20Coatings-1.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/877851/files/Cottre%20et%20al_.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/877851/files/Cottre%20et%20al_.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877851
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167359
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130238
913 1 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b Z PHYS CHEM : 2018
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21