000877860 001__ 877860
000877860 005__ 20240715202020.0
000877860 0247_ $$2doi$$a10.1109/LGRS.2020.3005730
000877860 0247_ $$2WOS$$aWOS:000690441200012
000877860 037__ $$aFZJ-2020-02481
000877860 082__ $$a550
000877860 1001_ $$0P:(DE-Juel1)129506$$aMontzka, Carsten$$b0$$eCorresponding author
000877860 245__ $$aEstimating the Number of Reference Sites Necessary for the Validation of Global Soil Moisture Products
000877860 260__ $$aNew York, NY$$bIEEE$$c2020
000877860 3367_ $$2DRIVER$$aarticle
000877860 3367_ $$2DataCite$$aOutput Types/Journal article
000877860 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721023342_14182
000877860 3367_ $$2BibTeX$$aARTICLE
000877860 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877860 3367_ $$00$$2EndNote$$aJournal Article
000877860 520__ $$aThe Committee on Earth Observation Satellites (CEOS) Land Product Validation (LPV) subgroup has been established to coordinate the development of standardized validation across the satellite-derived products from different platforms, sensors, and algorithms with reference measurements from the in situ networks. Soil moisture exhibits a high variability in space that challenges the in situ validation. One of the main drivers for this variability is the characteristic heterogeneity in the soil texture. By the machine learning methods using the soil profile measurements and the remotely sensed predictors, spatially continuous maps of basic soil properties such as soil texture and bulk density are available. Those can be used to estimate soil moisture variability within a satellite product grid cell, here exemplarily shown for the Soil Moisture Active Passive (SMAP) 36-km product. The soil moisture standard deviation is described as a function of the mean soil moisture, whereby the approach needs the mean and standard deviation of the hydraulic parameters as input. The resulting global data set helps identifying the number of in situ stations necessary to validate the coarse soil moisture products. For most SMAP grid cells, three to four stations are adequate to estimate the mean soil moisture for validation; however, also regions were identified where 80 stations are necessary.
000877860 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000877860 588__ $$aDataset connected to CrossRef
000877860 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye R.$$b1$$ufzj
000877860 7001_ $$0P:(DE-Juel1)129469$$aHerbst, Michael$$b2$$ufzj
000877860 7001_ $$00000-0003-4776-1918$$aCosh, Michael H.$$b3
000877860 7001_ $$00000-0002-1760-2425$$aJagdhuber, Thomas$$b4
000877860 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b5
000877860 773__ $$0PERI:(DE-600)2138738-2$$a10.1109/LGRS.2020.3005730$$gp. 1 - 5$$n9$$p1530 - 1534$$tIEEE geoscience and remote sensing letters$$v18$$x1545-598X$$y2020
000877860 8564_ $$uhttps://juser.fz-juelich.de/record/877860/files/Invoice_APC600132885.pdf
000877860 8564_ $$uhttps://juser.fz-juelich.de/record/877860/files/Invoice_APC600133374.pdf
000877860 8564_ $$uhttps://juser.fz-juelich.de/record/877860/files/Invoice_APC600132885.pdf?subformat=pdfa$$xpdfa
000877860 8564_ $$uhttps://juser.fz-juelich.de/record/877860/files/Invoice_APC600133374.pdf?subformat=pdfa$$xpdfa
000877860 8767_ $$8APC600132885$$92020-07-06$$d2020-07-09$$eHybrid-OA$$jZahlung erfolgt$$pGRSL-01013-2019$$zUSD 1738,25, Belegnr. 1200154680
000877860 8767_ $$8APC600133374$$92020-07-08$$d2020-07-13$$eOther$$jZahlung erfolgt$$pGRSL-01013-2019$$zUSD 400,- Overlength page charge
000877860 909CO $$ooai:juser.fz-juelich.de:877860$$pVDB$$pOpenAPC$$popenCost
000877860 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich$$b0$$kFZJ
000877860 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b1$$kFZJ
000877860 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129469$$aForschungszentrum Jülich$$b2$$kFZJ
000877860 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b5$$kFZJ
000877860 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000877860 9141_ $$y2020
000877860 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE GEOSCI REMOTE S : 2018$$d2020-01-10
000877860 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-10
000877860 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-10
000877860 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-10
000877860 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-10
000877860 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-10
000877860 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-10
000877860 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-10
000877860 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-10
000877860 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000877860 980__ $$ajournal
000877860 980__ $$aVDB
000877860 980__ $$aI:(DE-Juel1)IBG-3-20101118
000877860 980__ $$aAPC
000877860 980__ $$aUNRESTRICTED
000877860 9801_ $$aAPC