001     877860
005     20240715202020.0
024 7 _ |a 10.1109/LGRS.2020.3005730
|2 doi
024 7 _ |a WOS:000690441200012
|2 WOS
037 _ _ |a FZJ-2020-02481
082 _ _ |a 550
100 1 _ |a Montzka, Carsten
|0 P:(DE-Juel1)129506
|b 0
|e Corresponding author
245 _ _ |a Estimating the Number of Reference Sites Necessary for the Validation of Global Soil Moisture Products
260 _ _ |a New York, NY
|c 2020
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721023342_14182
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Committee on Earth Observation Satellites (CEOS) Land Product Validation (LPV) subgroup has been established to coordinate the development of standardized validation across the satellite-derived products from different platforms, sensors, and algorithms with reference measurements from the in situ networks. Soil moisture exhibits a high variability in space that challenges the in situ validation. One of the main drivers for this variability is the characteristic heterogeneity in the soil texture. By the machine learning methods using the soil profile measurements and the remotely sensed predictors, spatially continuous maps of basic soil properties such as soil texture and bulk density are available. Those can be used to estimate soil moisture variability within a satellite product grid cell, here exemplarily shown for the Soil Moisture Active Passive (SMAP) 36-km product. The soil moisture standard deviation is described as a function of the mean soil moisture, whereby the approach needs the mean and standard deviation of the hydraulic parameters as input. The resulting global data set helps identifying the number of in situ stations necessary to validate the coarse soil moisture products. For most SMAP grid cells, three to four stations are adequate to estimate the mean soil moisture for validation; however, also regions were identified where 80 stations are necessary.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bogena, Heye R.
|0 P:(DE-Juel1)129440
|b 1
|u fzj
700 1 _ |a Herbst, Michael
|0 P:(DE-Juel1)129469
|b 2
|u fzj
700 1 _ |a Cosh, Michael H.
|0 0000-0003-4776-1918
|b 3
700 1 _ |a Jagdhuber, Thomas
|0 0000-0002-1760-2425
|b 4
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 5
773 _ _ |a 10.1109/LGRS.2020.3005730
|g p. 1 - 5
|0 PERI:(DE-600)2138738-2
|n 9
|p 1530 - 1534
|t IEEE geoscience and remote sensing letters
|v 18
|y 2020
|x 1545-598X
856 4 _ |u https://juser.fz-juelich.de/record/877860/files/Invoice_APC600132885.pdf
856 4 _ |u https://juser.fz-juelich.de/record/877860/files/Invoice_APC600133374.pdf
856 4 _ |u https://juser.fz-juelich.de/record/877860/files/Invoice_APC600132885.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/877860/files/Invoice_APC600133374.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:877860
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129506
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129440
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129469
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE GEOSCI REMOTE S : 2018
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-10
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21