000877867 001__ 877867
000877867 005__ 20210130005256.0
000877867 0247_ $$2doi$$a10.1103/PhysRevB.102.035114
000877867 0247_ $$2ISSN$$a0163-1829
000877867 0247_ $$2ISSN$$a0556-2805
000877867 0247_ $$2ISSN$$a1050-2947
000877867 0247_ $$2ISSN$$a1094-1622
000877867 0247_ $$2ISSN$$a1095-3795
000877867 0247_ $$2ISSN$$a1098-0121
000877867 0247_ $$2ISSN$$a1538-4446
000877867 0247_ $$2ISSN$$a1538-4489
000877867 0247_ $$2ISSN$$a1550-235X
000877867 0247_ $$2ISSN$$a2469-9950
000877867 0247_ $$2ISSN$$a2469-9969
000877867 0247_ $$2ISSN$$a2469-9977
000877867 0247_ $$2Handle$$a2128/25245
000877867 0247_ $$2WOS$$aWOS:000545539900007
000877867 037__ $$aFZJ-2020-02485
000877867 082__ $$a530
000877867 1001_ $$0P:(DE-Juel1)168540$$aGhanem, Khaldoon$$b0
000877867 245__ $$aExtending the average spectrum method: Grid point sampling and density averaging
000877867 260__ $$aWoodbury, NY$$bInst.$$c2020
000877867 3367_ $$2DRIVER$$aarticle
000877867 3367_ $$2DataCite$$aOutput Types/Journal article
000877867 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594194271_24022
000877867 3367_ $$2BibTeX$$aARTICLE
000877867 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877867 3367_ $$00$$2EndNote$$aJournal Article
000877867 520__ $$aAnalytic continuation of imaginary time or frequency data to the real axis is a crucial step in extracting dynamical properties from quantum Monte Carlo simulations. The average spectrum method provides an elegant solution by integrating over all nonnegative spectra weighted by how well they fit the data. In a recent paper, we found that discretizing the functional integral, as in Feynman's path-integrals, does not have a well-defined continuum limit. Instead, the limit depends on the discretization grid whose choice may strongly bias the results. In this paper, we demonstrate that sampling the grid points, instead of keeping them fixed, also changes the functional integral limit and rather helps to overcome the bias considerably. We provide an efficient algorithm for doing the sampling and show how the density of the grid points acts now as a default model with a significantly reduced biasing effect. The remaining bias depends mainly on the width of the grid density, so we go one step further and average also over densities of different widths. For a certain class of densities, including Gaussian and exponential ones, this width averaging can be done analytically, eliminating the need to specify this parameter without introducing any computational overhead.
000877867 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000877867 588__ $$aDataset connected to CrossRef
000877867 7001_ $$0P:(DE-Juel1)130763$$aKoch, Erik$$b1$$eCorresponding author
000877867 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.102.035114$$gVol. 102, no. 3, p. 035114$$n3$$p035114$$tPhysical review / B$$v102$$x0163-1829$$y2020
000877867 8564_ $$uhttps://juser.fz-juelich.de/record/877867/files/PhysRevB.102.035114.pdf$$yOpenAccess
000877867 8564_ $$uhttps://juser.fz-juelich.de/record/877867/files/PhysRevB.102.035114.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877867 909CO $$ooai:juser.fz-juelich.de:877867$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877867 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168540$$aForschungszentrum Jülich$$b0$$kFZJ
000877867 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130763$$aForschungszentrum Jülich$$b1$$kFZJ
000877867 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000877867 9141_ $$y2020
000877867 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-24
000877867 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-24
000877867 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-24
000877867 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877867 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-24
000877867 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2018$$d2020-01-24
000877867 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-24
000877867 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-24
000877867 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-24
000877867 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-24
000877867 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877867 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-24
000877867 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-24
000877867 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-24
000877867 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-24
000877867 920__ $$lyes
000877867 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000877867 980__ $$ajournal
000877867 980__ $$aVDB
000877867 980__ $$aUNRESTRICTED
000877867 980__ $$aI:(DE-Juel1)JSC-20090406
000877867 9801_ $$aFullTexts