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Analytic continuation of imaginary time or frequency data to the real axis is a crucial step in extracting
dynamical properties from quantum Monte Carlo simulations. The average spectrum method provides an elegant
solution by integrating over all nonnegative spectra weighted by how well they fit the data. In a recent paper,
we found that discretizing the functional integral, as in Feynman’s path-integrals, does not have a well-defined
continuum limit. Instead, the limit depends on the discretization grid whose choice may strongly bias the results.
In this paper, we demonstrate that sampling the grid points, instead of keeping them fixed, also changes the
functional integral limit and rather helps to overcome the bias considerably. We provide an efficient algorithm for
doing the sampling and show how the density of the grid points acts now as a default model with a significantly
reduced biasing effect. The remaining bias depends mainly on the width of the grid density, so we go one step
further and average also over densities of different widths. For a certain class of densities, including Gaussian and
exponential ones, this width averaging can be done analytically, eliminating the need to specify this parameter
without introducing any computational overhead.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) simulations have become
an indispensable tool for studying quantum many-body sys-
tems. They often compute Green’s or correlation functions
on the imaginary-time axis or Matsubara frequencies, which
then need to be analytically continued to the real axis to
extract dynamical information about the system of interest.
One important example of analytic continuation is obtaining
the spectral function A(ω) at real frequencies from finite-
temperature Green’s function values G(τ ) at imaginary times
τ ∈ [0, β], where the two functions are related by

G(τ ) = −
1

2π

∫

dω
e−τω

1 + e−βω
A(ω), (1)

and β = 1/T is the inverse temperature. Another example
is determining the optical conductivity spectrum σ (ω) from
the current-current correlation function �(iωm) evaluated at
bosonic Matsubara frequencies ωn = 2mπ/β. The relation
between the two reads

�(iωm) =
2

π

∫ ∞

0
dω

ω2

ω2
m + ω2

σ (ω). (2)

In general, the analytic continuation problem reduces to
solving an integral equation. The difficulty is that, in the
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presence of noise, this is an inherently ill-posed problem.
When evaluating the data on the imaginary axis, oscillations
and sharp features in the spectrum get smoothed and noise
gets damped due to the integration. This makes the inverse
problem of reconstructing the details of the spectrum ex-
tremely challenging. Without regularization, small noise on
the data leads to catastrophically large errors on the best
data-fitting spectrum.

There are different approaches to tackle this problem
including the maximum entropy method [1–5], the aver-
age spectrum method [6–13], Pade approximation techniques
[14–17], and some recent machine-learning based approaches
[18–21]. The most commonly used approach is the maximum
entropy method (MaxEnt), which is rooted in Bayesian in-
ference. It tries to find a spectrum by balancing the fit to
the data and the entropy relative to some default model. This
entropy term acts as a regularization that penalizes deviations
from the featureless default model and thus suppresses rapid
oscillations that otherwise would dominate the solution.

The average spectrum method (ASM) is an alternative
Bayesian approach with the following premise: Since the data
are not exact, all spectra that fit the data equally well, up to
the noise level on that data, should be considered equally. As
a result, ASM integrates over all admissible spectra weighted
by how well they fit the data. The average spectrum method
makes no assumptions about the smoothness of the spectrum
and any regularization comes from averaging only, which is
expected to smooth out details not supported by the data:
Larger noise leads to more smoothing.

We continue here our work published in Ref. [13], which
in the following will be referred to as ASM1. In ASM1, we
showed that a naive discretization of the functional integral
involved in the average spectrum method does not produce
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unique results. The results are biased by the discretization
grid on which the spectrum is represented. We constructed
the grids explicitly by mapping the real-frequency axis to the
unit interval using a density function and then discretizing
this interval using a regular grid. We found that the density
function of the grid points plays the role of a default model
while the number of grid points acts as a regularization pa-
rameter. We proposed a practical recipe for choosing a reliable
grid by comparing the results of different grid densities and
choosing the one with the least dependence on the number of
grid points.

In the present paper, we generalize the average spectrum
method by releasing the grid points and sampling their po-
sition from a prior grid density. Although, we still need to
specify a grid density and a number of points, we show that
the bias is significantly reduced and we observe that it depends
mainly on the width rather than the shape of its density.
The proper width can be chosen according to the same type
of recipe used earlier for the fixed grid. We can, however,
go further and extend the method to sample over a whole
class of grid densities of variable widths. The method is then
able to automatically relocate the grid points and concentrate
them into the important region of the real-frequency axis.
Test cases show that this width-sampling method gives good
results resolving the features of the spectrum without the need
for fine-tuning the grid.

The structure of the paper is as follows. We first review
the average spectrum method and reformulate it in a way
that facilitates subsequent developments. We then introduce
released-grid ASM and explain an efficient algorithm for sam-
pling the grid points. We examine the effect of this sampling
on the grid bias using a problematic test case discussed earlier
in ASM1. To illustrate the remaining width-dependence, we
then consider another test case and use it to motivate the
width-sampling ASM derived afterward. Finally, we discuss
the role of the grid size as a regularization parameter and
provide a simple recipe for choosing a good number of grid
points. We end with a summary and a discussion.

II. AVERAGE SPECTRUM METHOD

A. Background

Mathematically, the analytic continuation problem can be
formulated as a Fredholm integral equation of the first kind

g(y) =
∫

dx K (y, x) f (x), (3)

where the left-hand side g(y) represents QMC data, while
the integral kernel K (y, x) is a continuous function known
analytically. The goal is estimating the spectrum f (x), an
integrable nonnegative function.

QMC provides noisy and incomplete samples of the data
evaluated at a finite number of y-coordinates. Using the central
limit theorem, one can assume that the exact data vector g has
a Gaussian distribution with mean equal to the sample mean ḡ

and covariance matrix equal to the sample covariance matrix
C. Then the likelihood of a spectrum f being the exact one is
proportional to

exp
(

− 1
2 (ḡ − g[ f ])†C−1(ḡ − g[ f ])

)

=: e−χ2[ f ]/2, (4)

where g[ f ] is the data corresponding to the spectrum f

and χ2[ f ] is its fit to the measured data. Maximizing the
likelihood (or equivalently minimizing the fit χ2) gives a spec-
trum dominated by diverging amplitudes that are extremely
sensitive to the noise of the data. This ill-posedness constitutes
the primary difficulty of the analytic continuation problem.

The average spectrum method uses the likelihood along-
side our prior knowledge about the nonnegativity of the spec-
trum and computes a weighted average over all nonnegative
spectra as an estimate of the true spectrum

fASM(x) ∝
∫

f (x)�0
D f e−χ2[ f ]/2 f (x). (5)

Other exact prior knowledge, like sum rules, can be easily
incorporated by restricting the averaging to the spectra sat-
isfying them.

Despite the apparent elegance of this functional integral
formulation, we found in ASM1 that it is not a well-defined
expression because the result depends on how the spectrum
f (x) is discretized. In ASM1 the discretization was speci-
fied by a grid density function ρ(x) and the total number
of grid points N . Using ρ(x), we mapped the domain of
the variable x into a unit interval of an auxiliary variable
z(x) :=

∫ x

xmin
dx′ρ(x′), discretized it uniformly with N points,

and mapped the points back to x. We showed for such grids
that the density ρ(x) plays the role of a default mode, while N

plays the role of a regularization parameter.
To demonstrate this role of the grid density ρ(x) and simul-

taneously introduce some notation, we repeat the argument of
appealing to symmetry when the data contains no information
other than normalization to unity. In that case, the spectral
integrals over different grid intervals Ii = [x̄i, x̄i+1] should be
equal

f̄i :=
∫ x̄i+1

x̄i

dx f (x) =
1

N
. (6)

The widths of these intervals are inversely proportional to the
grid density


xi ≈
1

Nρ(xi )
, (7)

with xi ∈ Ii being the grid point representing the ith interval.
Therefore, in the absence of data, the estimated mean values
of the spectrum are equal to the grid density

f (xi ) = fi :=
f̄i


xi

≈ ρ(xi ), (8)

justifying calling it a default model.

B. Formalism

To spell out the dependence of the average spectrum
method on the discretization grid explicitly, let us parametrize
the spectrum by its grid points x and its integrals over the
grid intervals f̄ , defined in (6). Together they are enough
to determine the data (up to a discretization error) without
knowing the details of the spectrum inside the grid intervals.
This follows from the first mean-value theorem for integrals,
which states that for any nonnegative integrable function f (x),
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there is a specific point x⋆
i ∈ [x̄i, x̄i+1] such that

∫ x̄i+1

x̄i

dx K (y, x) f (x) = K (y, x⋆
i )

∫ x̄i+1

x̄i

dx f (x). (9)

Using this, we can approximate the data as follows:

g[f̄, x] ≈
∑

i

K (y; xi ) f̄i =: K[x] f̄ . (10)

The approximation comes from using the grid points xi instead
of the unknown optimal points x⋆

i , which depend on both
the spectrum f (x) and the kernel K (x, y). The approximation
error is proportional to the difference between the maximum
and minimum values of the kernel K (x, y) inside each interval.
Since the kernel is a continuous function of x, this error gets
smaller, the smaller the intervals are and the smoother the
kernel is. Using a fine-enough grid, the error becomes so small
that it is negligible in comparison to the noise on the data.

Contrary to the data, the spectrum cannot be determined
entirely from the spectral integrals f̄ and some assumptions
about its behavior inside the grid intervals are needed. We
may also need to specify how to go from grid points x to the
intervals edges x̄. To stay as general as possible, we encode
whatever assumptions we have in the object f (f̄, x; x), which
maps a set of gird points x and integrals f̄ into a nonnegative
integrable function of the continuous variable x. A simple
choice is using delta functions located at the grid points

f (x, f̄ ; x) =
∑

i

f̄i δ(x − xi ), (11)

another is a piecewise constant function

f (x, f̄ ; x) =
∑

i

f̄i

x̄i+1−x̄i

(
(x−x̄i ) − 
(x−x̄i+1)). (12)

The advantage of the above general formulation is that we do
not need to know the exact form of f (f̄, x; x) when sampling
the spectral functions. It becomes relevant only when averag-
ing them, which will be discussed in Sec. III B.

The functional integral of the average spectrum can now
be written as a multidimensional integral over parameterized
functions f (f̄, x; x) given the mean data vector ḡ, the covari-
ance matrix C and the gird points x. The averaging is carried
over all spectral integrals f̄ on that grid, weighted by their fit

fASM(x; x) ∝
∫ ∞

0
d f̄ e−χ2[f̄,x]/2 f (f̄, x; x), (13)

where the dependence of the fit χ2 on the grid points x is
through the discretized kernel matrix K evaluated at these
points

χ2[f̄, x] := (ḡ − K[x] f̄ )†C−1(ḡ − K[x] f̄ ). (14)

III. RELEASING GRID POINTS

The form of Eq. (13) spells out the grid dependence of
ASM explicitly and is suggestive of a straightforward exten-
sion of the method. Instead of having the grid points fixed
at regular intervals based on some density function ρ(x), let
us sample them freely from this distribution and average the

results

fASM(ρ, N ; x)∝
∫

dx

N
∏

i=1

ρ(xi )

∫ ∞

0
d f̄ e− 1

2 χ2[f̄,x] f (f̄, x; x).

(15)
Although we still need to specify the density function ρ(x)
and the number of grid points N as before, we expect the effect
on the results to be weaker than in the fixed-grid scenario
because the data are now allowed to influence the positions
of the grid points during the sampling.

It is worth noting that sampling grid points has been done
before in the context of the average spectrum method in
Refs. [8,11]. In these papers, the spectrum was represented
as a superposition of delta functions whose both weights and
positions were sampled. However, it was implicitly assumed
that sampling the positions was a technical detail and that
the result would be the same as the typical average spectrum
method with fixed positions [6,7,10]. This was probably due
to the mistaken belief in the existence and uniqueness of
the functional integral of Eq. (5). As shown in ASM1, this
functional integral does not exist and the result depends on the
discretization grid. In Sec. IV we will show that the results, in
fact, depend on whether the grid points are sampled and rather
improves significantly. But before that, we will describe an
efficient algorithm for performing the sampling and how the
spectra of different grids are averaged.

A. Sampling algorithm

The multidimensional integral in Eq. (15) is evaluated
using a Monte Carlo sampling algorithm. We start from some
initial spectrum on an initial grid. In practice, we use the same
grid as in the fixed-grid case, i.e., we choose the grid points
at regular intervals based on the density ρ(x) as in ASM1. We
also use the nonnegative least squares (NNLS) solution on that
grid as the initial spectrum [22].

The spectral integrals are then updated on the current grid
using the blocked-mode sampling introduced in ASM1. Given
the spectral integrals, the grid points are updated one at a time
using the Metropolis-Hastings algorithm explained below. All
samples of f̄ and x are stored during the sampling, and the
average spectrum fASM(ρ, N ; x) can be evaluated later at any
point x by evaluating each sampled model f (f̄, x; x) at that
point and averaging the results.

The Metropolis-Hastings algorithm for sampling grid
points has the following acceptance ratio

r =
e−χ2 (x′

i )/2

e−χ2 (xi )/2

ρ(x′
i )

ρ(xi )

q(x′
i → xi )

q(xi → x′
i )

, (16)

where q(xi → x′
i ) is the proposal distribution of moving grid

point i from an old position xi to a new position x′
i . As a

proposal distribution, we use a Gaussian approximation of the
data factor e−χ2/2. It is derived by writing the data fit as a
function of x′

i and expanding the kernel around xi. Keeping
only terms to second order in x′

i , we obtain

χ2(x′
i ) ≈ rTr − 2[rT∂Ki f̄i][x

′
i − xi]

+
[

f̄ 2
i ∂KT

i ∂Ki − f̄ir
T∂2Ki

]

[x′
i − xi]

2, (17)
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where r := g −
∑

j K(x j ) f̄ j is the old residual vector and

∂Ki := ∂xK(xi ), ∂2Ki := ∂2
x K(xi ) are kernel derivatives. By

completing the squares, the data fit can be written in the
following suggestive form:

χ2(x′
i ) ≈ (x′

i − µχ )2/σ 2
χ + const., (18)

where µχ := xi + σ 2
χ f̄ir

T∂Ki is the mean of the Gaussian ap-

proximation and σ−2
χ := f̄ 2

i ∂KT
i ∂Ki − f̄ir

T∂2Ki is its width.
Using this as a proposal probability gives, in general, a high
acceptance rate because the data are typically the dominating
factor in the acceptance ratio (16). However, when a grid point
is far away from zero or its weight is very small, the Gaussian
(18) is quite wide and the prior density ρ(x) becomes impor-
tant. To account for such cases, we combine the data Gaussian
with another one, centered at the old position xi, whose width
we choose equal to the width of the prior density. The last
width is used by itself in the proposal probability should the
data fit have negative curvature so that the approximation (18)
fails.

Samples are produced by iteratively sampling all the grid
points x followed by sampling all the spectral integrals f̄ . The
grid points are sampled one after the other in a random order
using the above algorithm. The spectral integrals are sampled
using blocked-mode sampling with a random block size. The
movement of grid points implies that the kernel matrix is
changing, so the singular value decomposition (SVD) of its
blocks should be recalculated in each iteration after all the grid
points have been updated. This decomposition costs O(N2

b M )
where Nb is the block size and M is the data vector size.
Since this is computationally expensive, we restrict the block
size to a maximum value. For a fixed grid, this leads to more
correlation between samples because the global updates using
larger blocks are skipped. For a released grid, however, the
effect is not as severe because the movement of the grid
points compensates for the lack of these global updates. We
found that a maximum block size of 32 provides a good
balance between the cost of each sample and the correlation
between samples. Due to grid points sampling and SVD,
the computational cost of a single sample of the average
spectrum method using released grid points is larger than that
of the fixed grid. However, we found that the samples of the
released-grid calculations are much less correlated than those
on a fixed-grid so that the total cost is effectively similar. The
execution time for any of the results presented later in this
paper does not exceed 2 minutes on a typical modern laptop.

B. Binning and averaging

Averaging samples requires evaluating the sampled spectra
on some fixed grid. We call this grid the binning grid to
distinguish it from the sampled one x. Let us denote its
intervals, the bins, as Bi. The binning would be different
depending on the mapping f (f̄, x; x). Assuming the delta
functions representation of Eq. (11), the ith bin average is
computed as

fi ≈
1

L

L
∑

k=1

1

len(Bi )

∑

xk
j ∈Bi

f̄ k
j , (19)

where the superscript k is indexing the samples and L is the
total number of samples.

Alternatively, we can assume a constant value inside each
interval Ik

j of the kth grid sample, as done in Eq. (12). This

implies that the corresponding spectral integral f̄ k
j should

be split proportionally among the bins that intersects this
interval

fi ≈
1

L

L
∑

k=1

1

len(Bi )

N
∑

j=1

len
(

Bi ∩ Ik
j

)

len
(

Ik
j

) f̄ k
j . (20)

This type of binning can be thought of as a linear interpolation
of (19) and thus leads to an average with less noise from
binning. Nevertheless, whatever binning we use, the averages
are similar when using reasonably large grid sizes N . For
simplicity, we typically use the delta binning.

Note that the bin size also affects the statistical error of
its average. Larger bins contain more sampled grid points
and thus have lower fluctuations and less noisy averages.
Therefore, in practice we use the following binning, which
gives roughly equal error bars across the bins: aggregate all
the grid samples and choose the bins such that each bin
contains roughly the same number of grid points. When we
want to compare to the fixed-grid ASM, we use, however,
the fixed grid for binning, making comparisons easier. Also
note that the error-bars of a binning grid will not change when
doubling the number of grid points and halving the number of
samples.

IV. DENSITY DEPENDENCE

To study the effect of releasing the grid points, we choose a
test case first introduced in Ref. [23], which we studied further
using fixed-grids in ASM1. We want to reconstruct an optical
conductivity given by

σ (ω) =
1

1 + (ω/Ŵe)6

∑

p=0,±1

W|p|

1 + [(ω + sgn(p)ε|p|)/Ŵ|p|]2
,

(21)

where the sum has three terms: A peak of weight W0 = 0.3
and width Ŵ0 = 0.6 centered at zero, and two peaks of weight
W1 = 0.2 and width Ŵ1 = 1.2 centered at ω = ±ε1 = ±3. All
terms are multiplied by a damping factor with Ŵe = 4 for a
faster decay at large frequencies. To get the necessary data for
analytic continuation, we compute the imaginary-frequency
correlation function �(iωm) analytically using Eq. (2) on
the first 60 Matsubara frequencies ωm = 2mπ/β with inverse
temperature β = 15. We then add relative Gaussian noise with
a standard deviation of 10−3 to simulate the noise in real
QMC data.

In Fig. 1, we compare ASM results using fixed and released
grid points. The same grid densities and numbers of grid
points were used in both cases: Uniform grid densities with
increasing cutoffs: 8, 16, 32, and 64 and correspondingly in-
creasing number of points N = 32, 64, 128, and 256. It is clear
that using a fixed uniform grid biases the results significantly,
leading to more pronounced spurious features as the cutoff
increases. This completely disappears when the grid points are
released so that the cutoff has negligible effect on the result.
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FIG. 1. Optical conductivity σ (ω) obtained using fixed-grid
ASM (top) and released-grid ASM (bottom). Uniform grid densities
with increasing cutoff ωmax (label) are used. The number of grid
points is proportional to the cutoff: N = 4 ωmax. For ease of compari-
son, the samples of the released calculations are binned and averaged
on the grids of the corresponding fixed calculations.

In Fig. 2, we also show results for different grid densities with
comparable widths. Also here, by releasing the grid points,
the influence of the shape of the grid density is reduced
significantly. This is understandable as now the grid points
can move to the region where the spectrum is concentrated,
allowing for the data to override the prior information encoded
in the grid density.

From this we might conclude that sampling the grid points
solves the bias problem. We know, however, that in the ab-
sence of data except for a sum rule on the spectrum, averaging
spectra on any grid just gives a result proportional to the grid
density function ρ(x). Thus, also released-grid ASM must
have a default model bias.

To see this bias clearly, we consider a somewhat contrived
test case: we seek to recover a Gaussian spectral function of
width 0.5 from the Green’s function data computed using (1).
The data are evaluated on 60 τ -points equally spaced in the in-
terval [0, β] with β = 50. As before, we add relative Gaussian
noise with a standard deviation of 10−3. One might think that
reconstructing such a featureless Gaussian should be a trivial
and boring task. However, it turns out that avoiding spurious
features in this setting is more challenging than anticipated.
In Fig. 3, we show ASM results using fixed and released
grids. We use a Gaussian grid density with different widths:
0.5, 1.0, 2.0. When the default model (grid density) width
equals the width of the exact spectrum 0.5, both methods give

0 2 4 6 8
ω

0.0

0.1

0.2

0.3

0.4

σ
(ω

)

exact

uniform

Gauss

exp

Lorentz

0 2 4 6 8
ω

0.0

0.1

0.2

0.3

0.4

σ
(ω

)

exact

uniform

Gauss

exp

Lorentz

FIG. 2. Optical conductivity σ (ω) obtained using fixed-grid
ASM (top) and released-grid ASM (bottom). The following grid
densities (labels) are used: Uniform (ωmax = 8), Gaussian (α = 4),
exponential (β = 3), and a Lorentzian (γ = 2.5). The number of
grid points is N = 64. For ease of comparison, the samples of the
released calculations are binned and averaged on the grids of the
corresponding fixed calculations.

perfect results as expected. As the width increases, spurious
features start to develop quickly. Although these features are
milder for released-grid than for fixed-grid ASM, they are still
clearly visible, in contrast with the earlier optical conductivity
case. This indicates that the data here are weaker in forcing
the grid points to stay in the frequency region of interest. A
practical solution for choosing the best width is to use the
same criterion as the one employed in choosing the fixed-grid
in ASM1: We choose the grid density with the best fit to the
data, which in this case would single out the width 0.5. Still,
this approach requires considering a number of grid densities
ρ(x) of different widths and choosing the best one. In the next
section, we describe a method that avoids choosing a specific
width altogether. It is worth mentioning that the bias caused by
the default model is not unique to ASM. Also MaxEnt, which
is known for its smooth results, produces in this case spurious
features when the width of the default model is larger than it
is supposed to be. They are, however, somewhat milder than
those of the two flavors of ASM (see Fig. 4).

V. AVERAGING WIDTH OF GRID DENSITY

Instead of finding the width giving the best fit to the data,
we propose here an alternative that is more in the spirit
of the average spectrum method: Instead of choosing some
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FIG. 3. Spectral function A(ω) obtained using fixed-grid ASM
(top) and released-grid ASM (bottom). Gaussian grid densities with
increasing width (label) are used. The number of grid points is
N = 512. For ease of comparison, the samples of the released cal-
culations are binned and averaged on the grids of the corresponding
fixed calculations.

width a priori, we average over the width parameter of the
grid density. Integrating over this parameter in (15) requires
evaluating the integral

∫

dw

∫

dx

N
∏

i=1

ρ(w; xi )

∫ ∞

0
d f̄ e−χ2[f̄,x]/2 f (f̄, x; x). (22)

One way could be sampling the width directly using
Metropolis-Hasting, but that would be inefficient: updating
the width would change the prior probabilities for all the grid
points. So for a large number of grid points, one would be
forced to take very small updates of the width to achieve a
reasonable acceptance rate. The more grid points, the less
efficient the sampling is. There is, however, a much more
elegant and efficient solution.

We notice that unlike the grid points x and spectral inte-
grals f̄ , the width parameter w is not directly related to the
data. Therefore, the above expression can be rearranged such
that the integral over the width is a function of the grid points
only

∫

dx

∫

dw

N
∏

i=1

ρ(w; xi )

︸ ︷︷ ︸

=:P(x)

∫ ∞

0
d f̄ e−χ2[f̄,x]/2 f (f̄, x; x). (23)
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FIG. 4. Spectral function A(ω) obtained using MaxEnt with
Gaussian default models used in Fig. 3. The results are obtained
using Bryan’s method implemented in Ref. [24]. Other methods
for choosing the regularization parameter, i.e., classic and historic
MaxEnt give indistinguishable results.

We can then perform the width integral P(x) analytically, e.g.,
for the family of density functions

ρq(w; x) ∝
1

w

exp

[

−
1

q

(
|x|
w

)q]

where q > 0, (24)

which are known as the exponential power distributions and
include the Gaussian distribution (q = 2), the exponential
distribution (q = 1) and the uniform distribution (q → ∞).
The integral over the width then becomes

P(x) ∝
∫ ∞

0
dw

1

w
N

exp

[

−
∑

i

1

q

(
|xi|
w

)q
]

=
∫ ∞

0
dw

1

w
N

exp

[

−
1

q

‖x‖q
q

w
q

]

, (25)

where the Lq-norm [25] is defined by

‖x‖q :=

(

∑

i

|xi|q
)1/q

. (26)

We use this norm to make the following change of variable:

z :=
‖x‖q

w

⇒
dw

dz
= −

‖x‖q

z2
, (27)

so that the integral over the new variable z becomes indepen-
dent of the grid points, leaving us with

P(x) ∝
1

‖x‖N−1
q

. (28)

From this, we see that weighting the grid points vector by
a power of its Lq-norm is equivalent to using a qth power
exponential function as a grid density and integrating flat over
the width parameter. More specifically, using the L2-norm is
equivalent to using a Gaussian grid density and integrating
over its standard deviation. Similarly, using the L1-norm is
equivalent to using an exponential density and integrating over
the scale parameter while using the L∞-norm corresponds
to using a uniform density and integrating over the cutoff.
Note that using a reciprocal prior in the width integral, as
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FIG. 5. Spectral function A(ω) obtained using width-sampling
ASM for the same problem as in Figs. 3 and 4. An exponential
(q = 1) and a Gaussian grid density (q = 2) with 512 grid points
is used. The samples are binned on a uniform grid.

appropriate for scale parameters [26, p. 109], instead of a
flat one leads to a very similar result where the power of the
norm is N−2 instead of N−1. The difference between the two
choices is insignificant in practice.

Substituting (28) back into the original expression (23) and
absorbing the integral over z in the overall normalization con-
stant we get the formal expression for this extended version of
the average spectrum method

fASM(ρq, N ; x)∝
∫

dx
1

‖x‖N−1
q

∫ ∞

0
d f̄ e− 1

2 χ2[f̄,x] f (f̄, x; x).

(29)

We can easily adapt the sampling algorithm for released-grid
ASM discussed in Sec. III A to evaluate this expression: We
simply replace the prior density function in the acceptance
ratio by the power ratio of the norms of grid samples. We only
need to choose a reasonable value for the width parameter
w of the proposal distribution which can be easily estimated,
e.g., from the nonnegative least squares (NNLS) solution [22].
This value need not be very close to the width of the exact
model. We ran calculations where it was an order of magni-
tude off. Obviously, its choice only affects the acceptance ratio
of grid points sampling.

In Fig. 5, we show the results of width-sampling ASM
for the same test case as in Fig. 3. We did the calculations
using both exponential (L1-norm) and Gaussian grid densities
(L2-norm). The results of both calculations are in excellent
agreement with the exact spectrum without the need for fine-
tuning the exact value of the width parameter. Width-sampling
ASM produces even better agreement than MaxEnt (Fig. 4).

In Fig. 6, we show the histogram of the scaled L2-norm of
grid samples from Gaussian densities (q = 2). We calculated

the scaled norm of a grid sample as ŵ :=
√∑

i x2
i /N . Notice

how the method automatically finds the optimal value of 0.5
and averages around it to the extent allowed by the noise in
the data.

For completeness, we also report the effect of width aver-
aging on the optical conductivity test case. The earlier results
with released grid points were already very good and showed
no noticable dependence on the width, so it does not come as

0.425 0.450 0.475 0.500 0.525 0.550 0.575
ŵ

0

5

10

15

20

p
(ŵ

)

FIG. 6. Histogram of the scaled L2-norm of grids sampled for
the case q = 2 of Fig. 5. The scaled L2-norm of a grid x is calculated
as the standard deviation of its points ŵ := 2

√

‖x‖2
2/N =

√∑

i x2
i /N .

The widths are centered around the width of the exact model (0.5).

a surprise that the results with width averaging are as good, as
can be seen from Fig. 7.

Note that, unlike the fixed- and released-grid average
spectrum method, width-sampling ASM does not have a
default model: In the absence of data, except for a sum rule,
the method does not give a result. This is by design: For
convergence, width-averaging requires the data to provide
information about the width. Having the least informative
prior, width-sampling ASM thus is the least biased of the
methods discussed here as may be seen by comparing Figs. 3
and 4 to Fig. 5.

VI. GRID SIZE DEPENDENCE

In ASM1, we discussed the dependence of the fixed-grid
average spectrum method on the number of grid points and
found that it plays the role of a regularization parameter:
As the number of grid points increases, the results change
and get more biased towards the grid density. The same
behavior still applies to the released-grid ASM but is much
weaker. This is in line with the overall reduction in the de-
pendence on the grid density we saw earlier. For example, we

0 2 4 6 8
ω
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0.1

0.2

0.3

0.4

σ
(ω

)

exact

q = 1.0

q = 2.0

FIG. 7. Optical conductivity σ (ω) obtained using width-
sampling ASM for the same problem as in Figs. 1 and 2. An
exponential (q = 1) and a Gaussian grid density (q = 2) with 512
grid points is used. The samples are binned on a uniform grid.
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FIG. 8. Dependence of the optical conductivity σ (ω) obtained
using fixed-grid ASM (top) and released-grid ASM (bottom) on the
grid size N (label). A Lorentzian grid density with parameter γ = 2.5
is used. For ease of comparison, the samples of the released calcula-
tions are binned and averaged on the grids of the corresponding fixed
calculations.

compare in Fig. 8 the N-dependence of the optical conductiv-
ity test case using fixed and released grid points. While the
fixed-grid calculations show a significant variation, released-
grid ASM results hardly change with the number of grid
points except for small differences near ω = 0. We know
that using a much larger number of grid points, even the
released-grid method will eventually show a more pronounced
dependence on the grid size. We did not, however, observe
this dependence in this test case for any reasonable value
of N . To see it in released-gird ASM or its width-sampling
extension, we need to look at yet another case where the exact
spectrum is significantly different from the singly peaked
default models we typically use.

To this end, let us take a spectral function composed of
four Gaussian peaks symmetric around zero. Two of the peaks
are narrow with width 0.1 and weight 0.15 and located at
frequencies ±0.5. The other two are wider with width 0.5
and weight 0.35 and located further out at ±2. As with the
previous spectral function, we generate the Green’s function
data using (1) on 60 τ -points for β = 50. We add relative
Gaussian noise with a standard deviation of 10−2.

In the top panel of Fig. 9, we plot the results of width-
sampling ASM using a Gaussian grid density (q = 2) and
different grid sizes. As the grid size increases, the results
get smoother and the peaks get wider demonstrating the
regularizing effect of the grid size even in the released-grid
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FIG. 9. Grid size dependence of the spectral function A(ω) of
four peaks using width-sampling ASM. A Gaussian grid density
(q = 2) is used. The samples are binned on a uniform grid. The
bottom panel shows histograms of the data fits of sampled spectra.

case. The behavior is similar using a fixed width. A better
understanding is gained by checking the fit histograms of the
sampled spectra in the bottom panel. As the grid size increases
beyond N = 128, the fit histograms, introduced in ASM1,
shift to the right and get wider showing a systematic bias
towards spectra of worse fits. On the other end, we observed
that when the grid size is lower than N = 16, the data fit gets
extremely poor due to the large discretization error. We did not
include results using such low grid sizes to avoid cluttering
the plots.

The qualitative behavior of the fit in the average spectrum
methods is depicted in Fig. 10. For very low grid sizes, the

Default Model

Region 

(Very Large N)

Large Discretization

Error Region

 (Very Small N)

More Bias

Sweet Spot

 (Low N Dependece)

FIG. 10. Schematic diagram of the average fit behavior in ASM
as the number of grid points N changes.

035114-8



EXTENDING THE AVERAGE SPECTRUM METHOD: GRID … PHYSICAL REVIEW B 102, 035114 (2020)

discretization error dominates, leading to a very bad fit. Once
the grid size is large enough such that the discretization error
becomes negligible relative to the noise on the data, increasing
the grid size leads to more bias and worse fit. This dependence
on the grid size starts out slowly and then accelerates till the
average spectrum approaches the default model (grid density)
for very large N .

Therefore, a weak dependence on the grid size indicates
a better grid density, and when the density matches the ex-
act model, the sweet spot extends to infinity. This behavior
applies equally to both the fixed and the released-grid ASM.
However, there are two main differences. The discretization

error for released-gird ASM is normally less than that of the
fixed grid. Also, the region of low N-dependence extends
further because the bias towards the grid density is much
reduced compared to fixed-grid ASM. In general, the results
of released-grid ASM show weak dependence for the typical
grid sizes we use. A good recipe for choosing N is to use the
largest value for which the fit does not get substantially worse.
For the test case of Fig. 9 this would be N = 128.

It may be worth mentioning that we tried sampling the
grid size using a flat prior. We found that the method chooses
a high number of points when the default model is highly
compatible with the data as in Fig. 8. But when the default
model does not fit the data very well, the method chooses a
very low number of points. This happened in cases like the
one shown in Fig. 9. In the end, we decided to keep the grid
size as an independent parameter of the method that we use for
checking the reliability of the results: A strong dependence on
the grid size indicates a strong bias towards the default model
and away from data.

Finally, we comment on the smoothing effect observed for
the satellite peaks of Fig. 9. The reason for this smoothing
should become clear by examining the integral equation (1),
which relates this spectrum to its data. Due to the exponential
factor e−ωτ , features of the spectrum that lie to the far right,
where ω ≫ 1/τ , have almost no contribution to the data
points evaluated at τ or larger. Similarly, features that lie to the
far left, such that ω ≪ −1/τ , have almost no contribution to
the data points evaluated at β − τ or smaller. As a result, fewer
data points will contain information about spectral features
as these features move way from zero. In general, the data
have a weaker dependence on the tail of the spectrum than
the features near zero. For ASM methods, this means that
there are many spectra with different tails that would give
rise to similar data. One obvious remedy would be to obtain
higher-quality data with more points, especially at the edges
of the interval [0, β]. When this is not feasible, no unbiased
method will be able to resolve such features fully without

prior knowledge.

VII. SUMMARY AND DISCUSSION

The results of the average spectrum method can strongly
depend on the discretization grid. One approach for handling
this dependence is choosing a grid density that fits the data

decently. We showed that sampling the grid points helps to
reduce the bias dramatically and thus obviates, in many cases,
the need to search for the best grid. But in some cases, the
width of the grid density still influences the results noticeably.
We, therefore, went one step further and averaged over the
results for grids of different widths. Remarkably, for a large
family of grid densities, we could perform this additional sam-
pling analytically, incurring only a negligible computational
overhead.

The approach used here for handling the grid dependence
led us to the following hierarchy of average spectrum methods
where each method extends the previous one by averaging
over the relevant parameters

∫

dw

∫

dx

N
∏

i=1

ρq(w; xi )

∫ ∞

0
d f̄ e− 1

2 χ2[f̄,x] f (f̄, x; x)
︸ ︷︷ ︸

fASM(x;x)
︸ ︷︷ ︸

fASM(ρq,w,N ;x)
︸ ︷︷ ︸

fASM(ρq,N ;x)

. (30)

It is obvious that the approach can be taken further by varying
over other parameters of the grid density. Had we, for exam-
ple, observed a strong dependence on the functional form of
the grid density, e.g., the parameter q in (29), we would have to
average the results of different values using suitable weights.

From this perspective, the functional-integral-based aver-
age spectrum method can be seen as a general framework for
obtaining data-compatible spectra in the context of analytic
continuation and similar spectral reconstruction problems.
Given a certain parametrization of the spectrum, the most
straightforward solution is estimating these parameters by
fitting the data. In many situations, this may be enough to
single out a small region of the parameter space with toler-
able variations in the spectrum. When observing a noticeable
sensitivity of the results to a parameter, one should consider
averaging over the results of different values of this parameter
to smooth out details not supported by the data. In light of
this, the fixed-gird method of ASM1 can be itself seen as an
extension of the nonnegative least squares method (NNLS),
where instead of finding the spectral integrals that fits the
data best, it averages over, giving equal weights to all spectral
integrals fitting the data equally.

In this paper, we could discuss only a few test cases, each
of which was introduced for illustrating specific aspects of the
average spectrum methods. Further test cases and applications
of theses extensions to real-world problems are discussed in
Ref. [27]. To encourage further testing of the ASM methods
and their use for practical problems, we present a highly opti-
mized implementation of all ASM methods and make it freely
accessible through an online interface found in Ref. [28],
where the user can upload data in a convenient format, submit
calculations with few clicks, and get the results interactively.
The interface also facilitates comparing different results to
apply our recipe for choosing the optimal parameters, if
needed.

[1] R. N. Silver, D. S. Sivia, and J. E. Gubernatis, Phys. Rev. B 41,
2380 (1990).

[2] M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133
(1996).

035114-9



KHALDOON GHANEM AND ERIK KOCH PHYSICAL REVIEW B 102, 035114 (2020)

[3] O. Gunnarsson, M. W. Haverkort, and G. Sangiovanni,
Phys. Rev. B 81, 155107 (2010).

[4] M. Jarrell, in Correlated Electrons: From Models to Materials,
edited by E. Pavarini, E. Koch, F. Anders, and M. Jarrell
(Forschungszentrum Jülich, Jülich, Germany, 2012).

[5] D. Bergeron and A.-M. S. Tremblay, Phys. Rev. E 94, 023303
(2016).

[6] S. R. White, in Computer Simulation Studies in Condensed

Matter Physics III, edited by D. P. Landau, K. K. Mon, and B.-B.
Schüttler (Springer, Heidelberg, Germany, 1991), pp. 145–153.

[7] A. W. Sandvik, Phys. Rev. B 57, 10287 (1998).
[8] K. S. D. Beach, arXiv:cond-mat/0403055.
[9] K. Vafayi and O. Gunnarsson, Phys. Rev. B 76, 035115 (2007).

[10] O. F. Syljuåsen, Phys. Rev. B 78, 174429 (2008).
[11] S. Fuchs, T. Pruschke, and M. Jarrell, Phys. Rev. E 81, 056701

(2010).
[12] A. W. Sandvik, Phys. Rev. E 94, 063308 (2016).
[13] K. Ghanem and E. Koch, Phys. Rev. B 101, 085111 (2020).
[14] H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179

(1977).
[15] K. S. D. Beach, R. J. Gooding, and F. Marsiglio, Phys. Rev. B

61, 5147 (2000).
[16] A. Östlin, L. Chioncel, and L. Vitos, Phys. Rev. B 86, 235107

(2012).

[17] J. Schött, I. L. M. Locht, E. Lundin, O. Grånäs, O. Eriksson,
and I. Di Marco, Phys. Rev. B 93, 075104 (2016).

[18] L.-F. Arsenault, A. Lopez-Bezanilla, O. A. von Lilienfeld, and
A. J. Millis, Phys. Rev. B 90, 155136 (2014).

[19] L.-F. Arsenault, R. Neuberg, L. A Hannah, and A. J. Millis,
Inverse Probl. 33, 115007 (2017).

[20] H. Yoon, J.-H. Sim, and M. J. Han, Phys. Rev. B 98, 245101
(2018).

[21] R. Fournier, L. Wang, O. V. Yazyev, and Q. S. Wu, Phys. Rev.
Lett. 124, 056401 (2020).

[22] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems

(SIAM, Philadelphia, 1995).
[23] O. Gunnarsson, M. W. Haverkort, and G. Sangiovanni,

Phys. Rev. B 82, 165125 (2010).
[24] R. Levy, J. LeBlanc, and E. Gull, Comput. Phys. Commun. 215,

149 (2017).
[25] Strictly speaking, this expression does not define a norm when

q < 1 because it violates the triangle inequality. Nevertheless,
our results still hold even in that case.

[26] C. S. Sivia and J. Skilling, Data Analysis: A Bayesian Tutorial,
2nd ed. (Oxford University Press, Oxford, 2006).

[27] K. Ghanem, Stochastic Analytic Continuation: A Bayesian
Approach, Ph.D. thesis, RWTH Aachen University, 2017.

[28] www.spektra.app.

035114-10


