001     877875
005     20210130005257.0
024 7 _ |a 10.1002/pssb.201700293
|2 doi
024 7 _ |a 0031-8957
|2 ISSN
024 7 _ |a 0370-1972
|2 ISSN
024 7 _ |a 1521-3951
|2 ISSN
024 7 _ |a 2128/25240
|2 Handle
024 7 _ |a altmetric:21429478
|2 altmetric
024 7 _ |a WOS:000417609800019
|2 WOS
037 _ _ |a FZJ-2020-02486
082 _ _ |a 530
100 1 _ |a Drögeler, Marc
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Simulations on the Influence of Spatially Varying Spin Transport Parameters on the Measured Spin Lifetime in Graphene Non-Local Spin Valves
260 _ _ |a Weinheim
|c 2017
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1594124066_20297
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Spin transport properties of graphene non‐local spin valve devices are typically determined from Hanle spin precession measurements by using a simplified solution of the one‐dimensional Bloch‐Torrey equation which assumes infinitely long transport channels and uniform spin transport parameter. We investigate the effects of a finite graphene size and explore the influence of spatially‐varying transport parameters on the measured Hanle curves by finite element simulations. We assume enhanced spin dephasing in the contact‐covered graphene areas with additional Fermi level pinning and explore the influence of non‐magnetic reference electrodes which are not properly decoupled from graphene. In experiments, it is typically observed that the spin lifetime increases with increasing charge carrier density. None of our simulations can reproduce this trend indicating that this dependency originates from spin transport through graphene areas which are not covered by contacts. We find that the extracted spin lifetime might be overestimated in flakes which are shorter than the spin diffusion length. Moreover, contact‐induced spin dephasing leads to an overall reduction of the extracted spin lifetime. Additionally, we show that non‐magnetic reference electrodes may also influence the measured spin lifetime even though they are not part of the transport area under investigation.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Volmer, Frank
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Stampfer, Christoph
|0 P:(DE-Juel1)180322
|b 2
700 1 _ |a Beschoten, Bernd
|0 P:(DE-Juel1)178028
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/pssb.201700293
|g Vol. 254, no. 11, p. 1700293 -
|0 PERI:(DE-600)1481096-7
|n 11
|p 1700293 -
|t Physica status solidi / B Basic research
|v 254
|y 2017
|x 0370-1972
856 4 _ |u https://juser.fz-juelich.de/record/877875/files/pssb.201700293.pdf
856 4 _ |y Published on 2017-08-08. Available in OpenAccess from 2018-08-08.
|u https://juser.fz-juelich.de/record/877875/files/1706.09807.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/877875/files/pssb.201700293.pdf?subformat=pdfa
856 4 _ |y Published on 2017-08-08. Available in OpenAccess from 2018-08-08.
|x pdfa
|u https://juser.fz-juelich.de/record/877875/files/1706.09807.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877875
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180322
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)178028
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)178028
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-02-27
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-02-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS STATUS SOLIDI B : 2018
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21