000877881 001__ 877881
000877881 005__ 20240711085642.0
000877881 0247_ $$2doi$$a10.1111/jace.17337
000877881 0247_ $$2ISSN$$a0002-7820
000877881 0247_ $$2ISSN$$a1551-2916
000877881 0247_ $$2Handle$$a2128/27324
000877881 0247_ $$2WOS$$aWOS:000546911600001
000877881 037__ $$aFZJ-2020-02488
000877881 082__ $$a660
000877881 1001_ $$0P:(DE-Juel1)171462$$aDash, Apurv$$b0$$eCorresponding author
000877881 245__ $$aShort SiC fiber/Ti 3 SiC 2 MAX phase composites: Fabrication and creep evaluation
000877881 260__ $$aWesterville, Ohio$$bSoc.$$c2020
000877881 3367_ $$2DRIVER$$aarticle
000877881 3367_ $$2DataCite$$aOutput Types/Journal article
000877881 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615278992_28928
000877881 3367_ $$2BibTeX$$aARTICLE
000877881 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877881 3367_ $$00$$2EndNote$$aJournal Article
000877881 520__ $$aThe compressive creep of silicon carbide fiber reinforced Ti3SiC2 MAX phase with both fine and coarse microstructure was investigated in the temperature range of 1000‐1300°C. Comparison of only steady‐state creep was done to understand the response of fabricated composite materials toward creep deformation. It was demonstrated that the fibers are more effective in reducing the creep rates for the coarse microstructure by an increase in activation energy compared to the variant with a finer microstructure, being partly a result of the enhanced creep rates for the microstructure with larger grain size. Grain boundary sliding along with fiber fracture appears to be the main creep mechanism for most of the tested temperature range. However, there are indications for a changed creep mechanism for the fine microstructure for the lowest testing temperature. Local pores are formed to accommodate differences in strain related to creeping matrix and predominantly elastically deformed fibers during creep. Microstructural analysis was done on the material before and after creep to understand the deformation mechanics.
000877881 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000877881 588__ $$aDataset connected to CrossRef
000877881 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, Jürgen$$b1$$ufzj
000877881 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b2$$ufzj
000877881 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b3$$ufzj
000877881 7001_ $$0P:(DE-Juel1)162271$$aGonzalez‐Julian, Jesus$$b4
000877881 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.17337$$gp. jace.17337$$n12$$p7072-7081$$tJournal of the American Ceramic Society$$v103$$x1551-2916$$y2020
000877881 8564_ $$uhttps://juser.fz-juelich.de/record/877881/files/jace.17337.pdf$$yOpenAccess
000877881 8767_ $$92020-06-27$$d2020-07-08$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$pJACERS-45782.R2
000877881 909CO $$ooai:juser.fz-juelich.de:877881$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000877881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171462$$aForschungszentrum Jülich$$b0$$kFZJ
000877881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich$$b1$$kFZJ
000877881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b2$$kFZJ
000877881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b3$$kFZJ
000877881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b4$$kFZJ
000877881 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877881 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877881 9141_ $$y2021
000877881 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000877881 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000877881 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26
000877881 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877881 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-26
000877881 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2018$$d2020-02-26
000877881 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000877881 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000877881 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000877881 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000877881 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000877881 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877881 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-26
000877881 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000877881 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000877881 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-26$$wger
000877881 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000877881 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000877881 9801_ $$aAPC
000877881 9801_ $$aFullTexts
000877881 980__ $$ajournal
000877881 980__ $$aVDB
000877881 980__ $$aUNRESTRICTED
000877881 980__ $$aI:(DE-Juel1)IEK-1-20101013
000877881 980__ $$aAPC
000877881 981__ $$aI:(DE-Juel1)IMD-2-20101013