000877883 001__ 877883 000877883 005__ 20230426083220.0 000877883 0247_ $$2doi$$a10.1103/PhysRevB.101.134418 000877883 0247_ $$2ISSN$$a0163-1829 000877883 0247_ $$2ISSN$$a0556-2805 000877883 0247_ $$2ISSN$$a1050-2947 000877883 0247_ $$2ISSN$$a1094-1622 000877883 0247_ $$2ISSN$$a1095-3795 000877883 0247_ $$2ISSN$$a1098-0121 000877883 0247_ $$2ISSN$$a1538-4446 000877883 0247_ $$2ISSN$$a1538-4489 000877883 0247_ $$2ISSN$$a1550-235X 000877883 0247_ $$2ISSN$$a2469-9950 000877883 0247_ $$2ISSN$$a2469-9969 000877883 0247_ $$2ISSN$$a2469-9977 000877883 0247_ $$2Handle$$a2128/25260 000877883 0247_ $$2altmetric$$aaltmetric:79849767 000877883 0247_ $$2WOS$$aWOS:000525840300002 000877883 037__ $$aFZJ-2020-02490 000877883 082__ $$a530 000877883 1001_ $$00000-0002-9829-8428$$aChen, Lebing$$b0 000877883 245__ $$aMagnetic anisotropy in ferromagnetic CrI 3 000877883 260__ $$aWoodbury, NY$$bInst.$$c2020 000877883 3367_ $$2DRIVER$$aarticle 000877883 3367_ $$2DataCite$$aOutput Types/Journal article 000877883 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594279347_9935 000877883 3367_ $$2BibTeX$$aARTICLE 000877883 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000877883 3367_ $$00$$2EndNote$$aJournal Article 000877883 520__ $$aWe use neutron scattering to show that ferromagnetic (FM) phase transition in the two-dimensional (2D)honeycomb lattice CrI3 is a weakly first order transition and controlled by spin-orbit coupling (SOC) inducedmagnetic anisotropy, instead of magnetic exchange coupling as in a conventional ferromagnet. With increasingtemperature, the magnitude of magnetic anisotropy, seen as a spin gap at the Brillouin zone center, decreasesin a power law fashion and vanishes at TC, while the in-plane and c-axis spin-wave stiffnesses associated withmagnetic exchange couplings remain robust at TC.We also compare parameter regimes where spin waves in CrI3can be described by a Heisenberg Hamiltonian with Dzyaloshinskii-Moriya interaction or a Heisenberg-KitaevHamiltonian. These results suggest that the SOC induced magnetic anisotropy plays a dominant role in stabilizingthe FM order in single layer 2D van der Waals ferromagnets. 000877883 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0 000877883 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x1 000877883 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x2 000877883 542__ $$2Crossref$$i2020-04-15$$uhttps://link.aps.org/licenses/aps-default-license 000877883 542__ $$2Crossref$$i2021-04-15$$uhttps://link.aps.org/licenses/aps-default-accepted-manuscript-license 000877883 588__ $$aDataset connected to CrossRef 000877883 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0 000877883 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1 000877883 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0 000877883 693__ $$0EXP:(DE-MLZ)PANDA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)PANDA-20140101$$6EXP:(DE-MLZ)SR2-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePANDA: Cold three axes spectrometer$$fSR2$$x0 000877883 7001_ $$0P:(DE-HGF)0$$aChung, Jae-Ho$$b1$$eCorresponding author 000877883 7001_ $$0P:(DE-HGF)0$$aChen, Tong$$b2 000877883 7001_ $$0P:(DE-HGF)0$$aDuan, Chunruo$$b3 000877883 7001_ $$0P:(DE-Juel1)156579$$aSchneidewind, Astrid$$b4 000877883 7001_ $$0P:(DE-Juel1)174091$$aRadelytskyi, Igor$$b5$$ufzj 000877883 7001_ $$0P:(DE-HGF)0$$aVoneshen, David J.$$b6 000877883 7001_ $$00000-0002-0907-9048$$aEwings, Russell A.$$b7 000877883 7001_ $$00000-0001-7884-9715$$aStone, Matthew B.$$b8 000877883 7001_ $$00000-0003-1940-4649$$aKolesnikov, Alexander I.$$b9 000877883 7001_ $$0P:(DE-HGF)0$$aWinn, Barry$$b10 000877883 7001_ $$0P:(DE-HGF)0$$aChi, Songxue$$b11 000877883 7001_ $$0P:(DE-HGF)0$$aMole, R. A.$$b12 000877883 7001_ $$0P:(DE-HGF)0$$aYu, D. H.$$b13 000877883 7001_ $$00000-0002-2853-2362$$aGao, Bin$$b14 000877883 7001_ $$00000-0002-6088-3170$$aDai, Pengcheng$$b15$$eCorresponding author 000877883 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.101.134418$$bAmerican Physical Society (APS)$$d2020-04-15$$n13$$p134418$$tPhysical Review B$$v101$$x2469-9950$$y2020 000877883 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.101.134418$$gVol. 101, no. 13, p. 134418$$n13$$p134418$$tPhysical review / B$$v101$$x2469-9950$$y2020 000877883 8564_ $$uhttps://juser.fz-juelich.de/record/877883/files/2020-Lebing%20Chen-PhysRevB.101.134418.pdf$$yOpenAccess 000877883 8564_ $$uhttps://juser.fz-juelich.de/record/877883/files/2020-Lebing%20Chen-PhysRevB.101.134418.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000877883 909CO $$ooai:juser.fz-juelich.de:877883$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire 000877883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156579$$aForschungszentrum Jülich$$b4$$kFZJ 000877883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174091$$aForschungszentrum Jülich$$b5$$kFZJ 000877883 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0 000877883 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1 000877883 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x2 000877883 9141_ $$y2020 000877883 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-24 000877883 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-24 000877883 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-24 000877883 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-24 000877883 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000877883 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2018$$d2020-01-24 000877883 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-24 000877883 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-24 000877883 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-24 000877883 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-24 000877883 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000877883 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-24 000877883 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-24 000877883 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-24 000877883 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-24 000877883 920__ $$lyes 000877883 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0 000877883 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1 000877883 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2 000877883 980__ $$ajournal 000877883 980__ $$aVDB 000877883 980__ $$aUNRESTRICTED 000877883 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 000877883 980__ $$aI:(DE-Juel1)JCNS-2-20110106 000877883 980__ $$aI:(DE-588b)4597118-3 000877883 9801_ $$aFullTexts 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41565-019-0438-6 000877883 999C5 $$1S. Lovesey$$2Crossref$$oS. Lovesey Theory of Thermal Neutron Scattering from Condensed Matter 1984$$tTheory of Thermal Neutron Scattering from Condensed Matter$$y1984 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/19/31/315204 000877883 999C5 $$1M. Collins$$2Crossref$$oM. Collins Magnetic Critical Scattering 1989$$tMagnetic Critical Scattering$$y1989 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.17.1133 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3719/14/34/012 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.17.913 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature22391 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature22060 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cm970256c 000877883 999C5 $$1B. D. Cullity$$2Crossref$$oB. D. Cullity Introduction to Magnetic Materials 2005$$tIntroduction to Magnetic Materials$$y2005 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/2053-1583/aa75ed 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.122.207201 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cm504242t 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.112.077204 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.241110 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.123.037203 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.017201 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41524-018-0115-6 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-648X/ab22ef 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.98.060405 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.98.100403 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevMaterials.2.024004 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.76.4046 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.80.4012 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/158670a0 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3719/20/16/018 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1714194 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-018-07547-6 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.8.041028 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-018-0626-9 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41563-018-0149-7 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41565-018-0063-9 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.8b00683 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2011.01.173 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2016.07.036 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/cryst7050121 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.17815/jlsrf-1-35 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.7566/JPSJS.82SA.SA027 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/251/1/012058 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1051/epjconf/20158303017 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.094422 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.3.157 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.144404 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.13788 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5019286 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/27/16/166002 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.8.299 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.212402 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.9b00553 000877883 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.5286/ISIS.E.RB1820251