Home > Publications database > Analytical and fast Fiber Orientation Distribution reconstruction in 3D-Polarized Light Imaging > print |
001 | 877886 | ||
005 | 20210423193416.0 | ||
024 | 7 | _ | |a 10.1016/j.media.2020.101760 |2 doi |
024 | 7 | _ | |a 1361-8415 |2 ISSN |
024 | 7 | _ | |a 1361-8423 |2 ISSN |
024 | 7 | _ | |a 1361-8431 |2 ISSN |
024 | 7 | _ | |a 2128/25906 |2 Handle |
024 | 7 | _ | |a pmid:32629230 |2 pmid |
024 | 7 | _ | |a WOS:000567866400002 |2 WOS |
024 | 7 | _ | |a altmetric:96154194 |2 altmetric |
037 | _ | _ | |a FZJ-2020-02491 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Alimi, Abib |0 0000-0002-7552-4744 |b 0 |e Corresponding author |
245 | _ | _ | |a Analytical and fast Fiber Orientation Distribution reconstruction in 3D-Polarized Light Imaging |
260 | _ | _ | |a Amsterdam [u.a.] |c 2020 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1619160694_2070 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Three dimensional Polarized Light Imaging (3D-PLI) is an optical technique which allows mapping the spatial fiber architecture of fibrous postmortem tissues, at sub-millimeter resolutions. Here, we propose an analytical and fast approach to compute the fiber orientation distribution (FOD) from high-resolution vector data provided by 3D-PLI. The FOD is modeled as a sum of K orientations/Diracs on the unit sphere, described on a spherical harmonics basis and analytically computed using the spherical Fourier transform. Experiments are performed on rich synthetic data which simulate the geometry of the neuronal fibers and on human brain data. Results indicate the analytical FOD is computationally efficient and very fast, and has high angular precision and angular resolution. Furthermore, investigations on the right occipital lobe illustrate that our strategy of FOD computation enables the bridging of spatial scales from microscopic 3D-PLI information to macro- or mesoscopic dimensions of diffusion Magnetic Resonance Imaging (MRI), while being a means to evaluate prospective resolution limits for diffusion MRI to reconstruct region-specific white matter tracts. These results demonstrate the interest and great potential of our analytical approach. |
536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 0 |
536 | _ | _ | |a 573 - Neuroimaging (POF3-573) |0 G:(DE-HGF)POF3-573 |c POF3-573 |f POF III |x 1 |
536 | _ | _ | |a 571 - Connectivity and Activity (POF3-571) |0 G:(DE-HGF)POF3-571 |c POF3-571 |f POF III |x 2 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 3 |
536 | _ | _ | |a CoBCoM - Computational Brain Connectivity Mapping (694665) |0 G:(EU-Grant)694665 |c 694665 |f ERC-2015-AdG |x 4 |
536 | _ | _ | |a SLNS - SimLab Neuroscience (Helmholtz-SLNS) |0 G:(DE-Juel1)Helmholtz-SLNS |c Helmholtz-SLNS |x 5 |
536 | _ | _ | |a 3D Reconstruction of Nerve Fibers in the Human, the Monkey, the Rodent, and the Pigeon Brain (jinm11_20181101) |0 G:(DE-Juel1)jinm11_20181101 |c jinm11_20181101 |f 3D Reconstruction of Nerve Fibers in the Human, the Monkey, the Rodent, and the Pigeon Brain |x 6 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Deslauriers-Gauthier, Samuel |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Matuschke, Felix |0 P:(DE-Juel1)169807 |b 2 |u fzj |
700 | 1 | _ | |a Müller, Andreas |0 P:(DE-Juel1)151332 |b 3 |
700 | 1 | _ | |a Muenzing, Sascha E. A. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Axer, Markus |0 P:(DE-Juel1)131632 |b 5 |u fzj |
700 | 1 | _ | |a Deriche, Rachid |0 0000-0002-4643-8417 |b 6 |
773 | _ | _ | |a 10.1016/j.media.2020.101760 |g Vol. 65, p. 101760 - |0 PERI:(DE-600)1497450-2 |p 101760 |t Medical image analysis |v 65 |y 2020 |x 1361-8415 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/877886/files/Alimi_etal_Med%20Image%20Analy_2020_preprint.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/877886/files/Analytical_and_Fast_Fiber_Orientation_Distribution.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/877886/files/Alimi_etal_Analytical_and_fast_Fiber_Orientation_Distribution_reconstruction_authors_version.pdf |y OpenAccess |z StatID:(DE-HGF)0510 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/877886/files/Alimi_etal_Med%20Image%20Analy_2020_preprint.pdf?subformat=pdfa |x pdfa |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/877886/files/Alimi_etal_Analytical_and_fast_Fiber_Orientation_Distribution_reconstruction_authors_version.pdf?subformat=pdfa |x pdfa |y OpenAccess |z StatID:(DE-HGF)0510 |
909 | C | O | |o oai:juser.fz-juelich.de:877886 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)169807 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)151332 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)131632 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Theory, modelling and simulation |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-573 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Neuroimaging |x 1 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-571 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Connectivity and Activity |x 2 |
913 | 2 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-01-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-10 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MED IMAGE ANAL : 2018 |d 2020-01-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-10 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-10 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-10 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-10 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b MED IMAGE ANAL : 2018 |d 2020-01-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-10 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-1-20090406 |k INM-1 |l Strukturelle und funktionelle Organisation des Gehirns |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-1-20090406 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|