001     877887
005     20240712084522.0
024 7 _ |a 10.1063/5.0011851
|2 doi
024 7 _ |a 2128/25289
|2 Handle
024 7 _ |a altmetric:85567162
|2 altmetric
024 7 _ |a WOS:000546343400001
|2 WOS
037 _ _ |a FZJ-2020-02492
082 _ _ |a 600
100 1 _ |a Ünlü, Feray
|0 0000-0001-7242-8020
|b 0
245 _ _ |a Understanding the interplay of stability and efficiency in A-site engineered lead halide perovskites
260 _ _ |a Melville, NY
|c 2020
|b AIP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1594900062_15750
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Organic–inorganic hybrid lead halide perovskites have gained significant attention as light-harvesting materials in thin-film photovoltaics due to their exceptional optoelectronic properties and simple fabrication process. The power conversion efficiency of perovskite solar cells (PSCs) has surged beyond 25% in a short time span. Their transition to commercial market is a “work in progress” due to limited long-term operational stability and the persisting environmental concern due to the presence of lead. Comprehensive investigations on the interplay of material composition and interfacial effects on the device performance of PSCs based on methylammonium lead iodide have shown the crucial role of an A-site cation in incipient deterioration of the material through external stimuli (moisture, light, oxygen, or heat). Consequently, a partial or complete replacement of A-site cations by up to four isoelectronic substituents has resulted in many new perovskite compositions. The correlations between the chemical composition and the optoelectronic properties are, however, not always easy to determine. A-site cation management is governed by stability and charge neutrality of the lattice, and the choices include Cs+-cations and organic cations such as CH3NH3+ or CH(NH2)2+ and combinations thereof. Since the size of the cations is an important structural parameter, an adequate compositional engineering of the A-site could effectively optimize the stability by reducing non-radiative defect sites and enhancing carrier lifetimes. This Perspective reflects on the experimental strategies for A-site cation management and their direct impact on the stability and device performance. It also highlights the opportunities and challenges for further research and industrial commercialization of PSCs.INTRODUCTION
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jung, Eunhwan
|0 0000-0002-9326-6486
|b 1
700 1 _ |a Haddad, Jinane
|0 P:(DE-Juel1)169644
|b 2
700 1 _ |a Kulkarni, Ashish
|0 P:(DE-Juel1)180881
|b 3
700 1 _ |a Öz, Senol
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Choi, Heechae
|0 0000-0002-9390-6607
|b 5
700 1 _ |a Fischer, Thomas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Chakraborty, Sudip
|0 0000-0002-6765-2084
|b 7
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 8
700 1 _ |a Mathur, Sanjay
|0 0000-0003-2765-2693
|b 9
|e Corresponding author
773 _ _ |a 10.1063/5.0011851
|g Vol. 8, no. 7, p. 070901 -
|0 PERI:(DE-600)2722985-3
|n 7
|p 070901
|t APL materials
|v 8
|y 2020
|x 2166-532X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/877887/files/5.0011851.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/877887/files/5.0011851.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877887
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169644
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180881
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)159457
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APL MATER : 2018
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-01-16
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21