001     877889
005     20240712084532.0
024 7 _ |a 10.1103/PhysRevResearch.2.023109
|2 doi
024 7 _ |a 2128/25292
|2 Handle
024 7 _ |a altmetric:80984674
|2 altmetric
024 7 _ |a WOS:000602780200009
|2 WOS
037 _ _ |a FZJ-2020-02494
082 _ _ |a 530
100 1 _ |a Kaienburg, Pascal
|0 P:(DE-Juel1)166075
|b 0
|e Corresponding author
245 _ _ |a How solar cell efficiency is governed by the αμτ product
260 _ _ |a College Park, MD
|c 2020
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1594903529_23652
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The interplay of light absorption, charge-carrier transport, and charge-carrier recombination determines the performance of a photovoltaic absorber material. Here we analyze the influence on the solar-cell efficiency of the absorber material properties absorption coefficient α, charge-carrier mobility μ, and charge-carrier lifetime τ, for different scenarios. We combine analytical calculations with numerical drift-diffusion simulations to understand the relative importance of these three quantities. Whenever charge collection is a limiting factor, the αμτ product is a good figure of merit (FOM) to predict solar-cell efficiency, while for sufficiently high mobilities, the relevant FOM is reduced to the ατ product. We find no fundamental difference between simulations based on monomolecular or bimolecular recombination, but strong surface-recombination affects the maximum efficiency in the high-mobility limit. In the limiting case of high μ and high surface-recombination velocity S, the α/S ratio is the relevant FOM. Subsequently, we apply our findings to organic solar cells which tend to suffer from inefficient charge-carrier collection and whose absorptivity is influenced by interference effects. We estimate that a modest increase in absorption strength by a factor of 1.5 leads to a relative efficiency increase of more than 10% for state-of-the-art organic solar cells.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Krückemeier, Lisa
|0 P:(DE-Juel1)173073
|b 1
700 1 _ |a Lübke, Dana
|0 P:(DE-Juel1)176482
|b 2
700 1 _ |a Nelson, Jenny
|0 0000-0003-1048-1330
|b 3
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)130285
|b 4
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 5
773 _ _ |a 10.1103/PhysRevResearch.2.023109
|g Vol. 2, no. 2, p. 023109
|0 PERI:(DE-600)3004165-X
|n 2
|p 023109
|t Physical review research
|v 2
|y 2020
|x 2643-1564
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/877889/files/PhysRevResearch.2.023109.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/877889/files/PhysRevResearch.2.023109.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877889
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)173073
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176482
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130285
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)159457
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21