000877890 001__ 877890
000877890 005__ 20230310131349.0
000877890 0247_ $$2doi$$a10.1002/andp.202000273
000877890 0247_ $$2ISSN$$a0003-3804
000877890 0247_ $$2ISSN$$a1521-3889
000877890 0247_ $$2Handle$$a2128/25643
000877890 0247_ $$2WOS$$aWOS:000546665300001
000877890 037__ $$aFZJ-2020-02495
000877890 041__ $$aEnglish
000877890 082__ $$a530
000877890 1001_ $$0P:(DE-Juel1)172738$$aZhang, Jinzhong$$b0
000877890 245__ $$aProximity-Effect-Induced Superconductivity in Nb/Sb2Te3 -Nanoribbon/Nb Junctions
000877890 260__ $$aLeipzig$$bBarth88001$$c2020
000877890 3367_ $$2DRIVER$$aarticle
000877890 3367_ $$2DataCite$$aOutput Types/Journal article
000877890 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617966596_8824
000877890 3367_ $$2BibTeX$$aARTICLE
000877890 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877890 3367_ $$00$$2EndNote$$aJournal Article
000877890 520__ $$aNanohybrid superconducting junctions using antimony telluride (Sb2Te3) topological insulator nanoribbons and Nb superconducting electrodes are fabricated using electron beam lithography and magnetron sputtering. The effects of bias current, temperature, and magnetic field on the transport properties of the junctions in a four‐terminal measurement configuration are investigated. Two features are observed. First, the formation of a Josephson weak‐link junction. The junction is formed by proximity‐induced areas in the nanoribbon right underneath the inner Nb electrodes which are connected by the few tens of nanometers short Sb2Te3 bridge. At 0.5 K a critical current of 0.15 µA is observed. The decrease of the supercurrent with temperature is explained in the framework of a diffusive junction. Furthermore, the Josephson supercurrent is found to decrease monotonously with the magnetic field indicating that the structure is in the small‐junction limit. As a second feature, a transition is also observed in the differential resistance at larger bias currents and larger magnetic fields, which is attributed to the suppression of the proximity‐induced superconductive state in the nanoribbon area underneath the Nb electrodes.
000877890 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000877890 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
000877890 588__ $$aDataset connected to CrossRef
000877890 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000877890 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
000877890 7001_ $$0P:(DE-Juel1)171826$$aJalil, Abdur Rehman$$b1
000877890 7001_ $$0P:(DE-HGF)0$$aTse, Pok-Lam$$b2
000877890 7001_ $$0P:(DE-Juel1)172619$$aKölzer, Jonas$$b3
000877890 7001_ $$0P:(DE-Juel1)167347$$aRosenbach, Daniel$$b4
000877890 7001_ $$0P:(DE-Juel1)177677$$aValencia, Helen$$b5
000877890 7001_ $$0P:(DE-Juel1)130811$$aLuysberg, Martina$$b6
000877890 7001_ $$0P:(DE-Juel1)128613$$aMikulics, Martin$$b7
000877890 7001_ $$0P:(DE-Juel1)128715$$aPanaitov, Gregory$$b8
000877890 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b9
000877890 7001_ $$0P:(DE-HGF)0$$aHu, Zhigao$$b10
000877890 7001_ $$0P:(DE-HGF)0$$aLu, Jia Grace$$b11
000877890 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b12$$eCorresponding author
000877890 773__ $$0PERI:(DE-600)1479791-4$$a10.1002/andp.202000273$$gp. 2000273 -$$n8$$p2000273 -$$tAnnalen der Physik$$v532$$x0003-3804$$y2020
000877890 8564_ $$uhttps://juser.fz-juelich.de/record/877890/files/andp.202000273.pdf$$yOpenAccess
000877890 8564_ $$uhttps://juser.fz-juelich.de/record/877890/files/andp202000273-sup-0001-suppmat.pdf$$yRestricted
000877890 8564_ $$uhttps://juser.fz-juelich.de/record/877890/files/andp.202000273.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877890 8564_ $$uhttps://juser.fz-juelich.de/record/877890/files/andp202000273-sup-0001-suppmat.pdf?subformat=pdfa$$xpdfa$$yRestricted
000877890 8767_ $$92020-06-09$$d2020-07-09$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$pandp.202000273
000877890 909CO $$ooai:juser.fz-juelich.de:877890$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000877890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172738$$aForschungszentrum Jülich$$b0$$kFZJ
000877890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171826$$aForschungszentrum Jülich$$b1$$kFZJ
000877890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172619$$aForschungszentrum Jülich$$b3$$kFZJ
000877890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167347$$aForschungszentrum Jülich$$b4$$kFZJ
000877890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177677$$aForschungszentrum Jülich$$b5$$kFZJ
000877890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130811$$aForschungszentrum Jülich$$b6$$kFZJ
000877890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich$$b7$$kFZJ
000877890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128715$$aForschungszentrum Jülich$$b8$$kFZJ
000877890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b9$$kFZJ
000877890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b12$$kFZJ
000877890 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000877890 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877890 9141_ $$y2020
000877890 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-15
000877890 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-15
000877890 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877890 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-15
000877890 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANN PHYS-BERLIN : 2018$$d2020-01-15
000877890 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-15
000877890 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-15
000877890 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-15
000877890 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-15
000877890 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877890 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-15
000877890 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-15
000877890 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-15
000877890 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-15
000877890 920__ $$lyes
000877890 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000877890 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000877890 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x2
000877890 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x3
000877890 980__ $$ajournal
000877890 980__ $$aVDB
000877890 980__ $$aI:(DE-Juel1)PGI-9-20110106
000877890 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000877890 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000877890 980__ $$aI:(DE-Juel1)IBI-3-20200312
000877890 980__ $$aAPC
000877890 980__ $$aUNRESTRICTED
000877890 9801_ $$aAPC
000877890 9801_ $$aFullTexts