001     877891
005     20210208142349.0
024 7 _ |a 10.1021/acs.jctc.0c00147
|2 doi
024 7 _ |a 1549-9618
|2 ISSN
024 7 _ |a 1549-9626
|2 ISSN
024 7 _ |a 2128/25358
|2 Handle
024 7 _ |a altmetric:82207029
|2 altmetric
024 7 _ |a pmid:32419451
|2 pmid
024 7 _ |a WOS:000607532300019
|2 WOS
037 _ _ |a FZJ-2020-02496
082 _ _ |a 610
100 1 _ |a Cuzzocrea, Alice
|0 0000-0001-7446-9643
|b 0
245 _ _ |a Variational Principles in Quantum Monte Carlo: The Troubled Story of Variance Minimization
260 _ _ |a Washington, DC
|c 2020
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1595600480_8584
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We investigate the use of different variational principles in quantum Monte Carlo, namely, energy and variance minimization, prompted by the interest in the robust and accurate estimation of electronic excited states. For two prototypical, challenging molecules, we readily reach the accuracy of the best available reference excitation energies using energy minimization in a state-specific or state-average fashion for states of different or equal symmetry, respectively. On the other hand, in variance minimization, where the use of suitable functionals is expected to target specific states regardless of the symmetry, we encounter severe problems for a variety of wave functions: as the variance converges, the energy drifts away from that of the selected state. This unexpected behavior is sometimes observed even when the target is the ground state and generally prevents the robust estimation of total and excitation energies. We analyze this problem using a very simple wave function and infer that the optimization finds little or no barrier to escape from a local minimum or local plateau, eventually converging to a lower-variance state instead of the target state. For the increasingly complex systems becoming in reach of quantum Monte Carlo simulations, variance minimization with current functionals appears to be an impractical route.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Scemama, Anthony
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Briels, Willem
|0 P:(DE-Juel1)159317
|b 2
|e Corresponding author
700 1 _ |a Moroni, Saverio
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Filippi, Claudia
|0 0000-0002-2425-6735
|b 4
773 _ _ |a 10.1021/acs.jctc.0c00147
|g p. acs.jctc.0c00147
|0 PERI:(DE-600)2166976-4
|n 7
|p 4203-4212
|t Journal of chemical theory and computation
|v 16
|y 2020
|x 1549-9626
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/877891/files/acs.jctc.0c00147.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/877891/files/acs.jctc.0c00147.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877891
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159317
910 1 _ |a IBI-4
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)159317
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-16
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CHEM THEORY COMPUT : 2018
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM THEORY COMPUT : 2018
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21