
Variational Principles in Quantum Monte Carlo: The Troubled Story
of Variance Minimization

Alice Cuzzocrea, Anthony Scemama,* Wim J. Briels,* Saverio Moroni,* and Claudia Filippi*

Cite This: https://dx.doi.org/10.1021/acs.jctc.0c00147 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: We investigate the use of different variational principles in
quantum Monte Carlo, namely, energy and variance minimization, prompted
by the interest in the robust and accurate estimation of electronic excited
states. For two prototypical, challenging molecules, we readily reach the
accuracy of the best available reference excitation energies using energy
minimization in a state-specific or state-average fashion for states of different
or equal symmetry, respectively. On the other hand, in variance minimization,
where the use of suitable functionals is expected to target specific states
regardless of the symmetry, we encounter severe problems for a variety of
wave functions: as the variance converges, the energy drifts away from that of
the selected state. This unexpected behavior is sometimes observed even
when the target is the ground state and generally prevents the robust estimation of total and excitation energies. We analyze this
problem using a very simple wave function and infer that the optimization finds little or no barrier to escape from a local minimum
or local plateau, eventually converging to a lower-variance state instead of the target state. For the increasingly complex systems
becoming in reach of quantum Monte Carlo simulations, variance minimization with current functionals appears to be an impractical
route.

1. INTRODUCTION

Light-induced processes are at the heart of a variety of
phenomena and applications which range from harnessing the
response to light of biological systems to improving the
technologies for renewable energies. The contribution of
electronic structure theory in this field hinges on its ability to
efficiently and accurately compute excited-state properties. In
this context, the use of quantum Monte Carlo (QMC)
methods is relatively recent and quite promising:1−9 QMC
approaches provide an accurate (stochastic) solution of the
Schrödinger equation and benefit from a favorable scaling with
system size and great ease of parallelization.10−12 Importantly,
recent methodological advancements13−16 have enabled the
fast calculation of energy derivatives and the optimization of
many thousands of parameters for the internally consistent
computation of QMC wave functions and geometries in the
ground and excited states.9,17

Here, we investigate the use of two different variational
principles for ground and excited states in QMC, namely,
variance and energy minimization, to assess whether they allow
us to fully capitalize on the increased power of minimization
algorithms and availability of accurate wave functions. Variance
minimization techniques18−22 have been extensively employed
in QMC for the last 30 years, but their potential for the
computation of excited states has only recently been revisited
and exploited to compute vertical excitation energies of various
small molecules.23,24 Different functionals for the optimization
of the variance19,22,23 have also been put forward with the

common attractive feature of the built-in possibility to target a
specific state and avoid, in principle, the complications
encountered in energy minimization where, without con-
straints, one would generally collapse to lower-energy states.
For our study, we select two molecules, a small cyanine dye

and a retinal model, because of the difficulties they pose in the
computation of the lowest vertical excitation energy4,25−28 and
the different requirements in the procedure adopted in energy
minimization: while the ground and excited states of the
cyanine belong to different symmetries and can therefore be
treated in a state-specific manner, this is not the case for the
retinal model, where energy minimization must be performed
in a state-average fashion. For both molecules and therefore
regardless of the nature of the optimization, we find that
energy minimization leads to the stable and fast convergence of
the total energies of the states of interest. Furthermore, with
the use of compact and balanced energy-minimized wave
functions constructed through a selected configuration
interaction (CI) approach, we recover vertical excitation
energies which are already at the variational Monte Carlo
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(VMC) level within chemical accuracy (about 0.04 eV) of the
reference coupled cluster or extrapolated CI values. On the
other hand, for both molecules and for nearly all wave
functions investigated, the optimization of all parameters in
variance minimization is problematic because it results in the
apparent loss of the state of interest over sufficiently long
optimization runs, precluding the estimate of the excitation
energy. This occurs for the different functionals originally
proposed to stabilize the optimization and, surprisingly, in
some cases, also when targeting the ground state. This finding
is unexpected, especially considering that variance minimiza-
tion has been the method of choice in QMC for decades and is
still routinely used, albeit for simpler systems and/or for wave
functions with a small number of parameters, often limited to
the Jastrow factor.
To understand these newly found issues, we examine how

variance minimization behaves when optimizing the linear
coefficients of a very small CI expansion: working in the linear
subspace spanned by a few approximate eigenvectors, we
discover that the optimization of the CI parameters in variance
minimization does not converge to the target eigenstate but to
a different one. In this specific example, during the
minimization, the system slowly reaches the eigenstate
corresponding to the absolute minimum of the variance, no
matter what the starting state is. We verify that a similar
pattern explains the unexpected behavior observed for more
complicated wave functions.
It is well known that the variance reaches its minimum value

of zero for every exact eigenstate.19 This is the very basis of
variance minimization. Whether the variance maintains a
minimum when any particular eigenstate is described by a
given approximate wave function is a question that can only be
assessed empirically on a case-by-case basis. Our calculations
identify missing minima in several instances of current interest
for QMC simulations. Systematic improvement of the wave
function to recover the zero-variance property of the exact
eigenstates would be possible, in principle, but impractically
demanding.
Our findings pose severe limitations on the application of

variance minimization for the increasingly complex systems
that are becoming accessible to QMC simulations.
In Section 2, we recap the equations used for energy and

variance optimization, discuss the procedure employed for the
state-average case, and introduce the ingredients for a stable
version of the Newton method in variance minimization. In
Section 3, we summarize the computational details, and in
Section 4, we present the accurate vertical excitation energies
obtained in energy minimization and the difficulties encoun-
tered in variance minimization for both molecules. We
elucidate these findings and conclude in Section 5.

2. METHODS

We briefly introduce below the variance and energy
minimization approaches used to optimize the wave functions
in variational Monte Carlo. While we employ variance
minimization as a state-specific approach to target a given
state, we must distinguish between a state-specific and a state-
average route for energy optimization when the excited state of
interest is of different or equal symmetry, respectively, than
other lower-lying states.
2.1. Wave Function Form. The wave functions employed

in this work are of the Jastrow−Slater type, namely, the

product of a determinantal expansion and a Jastrow correlation
function, , as

cD
i

N

i i

1

det

∑Ψ =
= (1)

where the determinants are expressed on single-particle
orbitals and the Jastrow factor includes an explicit dependence
on the electron−electron distances. Here, the Jastrow factor is
chosen to include electron−electron and electron−nucleus
correlation terms.29 For the determinantal component, we
select the relevant determinants according to different recipes:
(i) very simple ansatzes such as Hartree−Fock (HF) or a CI
singles (CIS) expansion recently put forward as a computa-
tionally cheap and sufficiently accurate wave function for
excited states in QMC;8,30 (ii) complete-active-space (CAS)
expansions where small sets of important active orbitals are
manually identified; and (iii) CI perturbatively selected
iteratively (CIPSI) expansions generated to yield automatically
balanced multiple states for a fast convergence of the QMC
excitation energy with the number of determinants. All
expansions are expressed in terms of spin-adapted config-
uration state functions (CSFs) to reduce the number of
variational parameters.

2.2. Energy Minimization. For state-specific optimization
in energy minimization, we employ the stochastic reconfigura-
tion (SR) method14,31 in a low-memory conjugate-gradient
implementation.14 Given a starting wave function Ψ depending
on a set of parameters p, we denote the derivatives of Ψ with
respect to the parameter pi as Ψi = ∂iΨ. At every step of SR
optimization, the parameter variations, Δp, are computed
according to the equation

S p gτ̅Δ = − (2)

where τ is a positive quantity chosen small enough to
guarantee the convergence. The vector g is the gradient of the
energy with components

g
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p
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E E
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where EL = ĤΨ/Ψ is the so-called local energy and ⟨.⟩ denotes
the Monte Carlo average of the quantity in brackets over the
electron configurations sampled from Ψ2/⟨Ψ|Ψ⟩. The matrix S̅
has components

Sij
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Ψ

Ψ

Ψ

Ψ
−

Ψ

Ψ

Ψ

Ψ
≡

Ψ̅

Ψ

Ψ̅

Ψ (4)

which are expressed in the last equality as the overlap matrix in
the semi-orthogonal basis, Ψ̅i = Ψi − [⟨Ψ|Ψi⟩/⟨Ψ|Ψ⟩]Ψ.
When the state of interest is energetically not the lowest in

its symmetry class, we start from a set of wave functions for the
multiple states which share the same Jastrow factor and orbitals
but are characterized by different linear CI coefficients as
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∑Ψ =
= (5)

where the superscript I indicates a particular state. To obtain a
balanced description of the states of interest, we optimize the
nonlinear parameters of the orbitals and the Jastrow factor by
minimizing the state-average energy1

E w
I

I

I I

I I
SA ∑=

⟨Ψ | ̂ |Ψ ⟩

⟨Ψ |Ψ ⟩ (6)

where the weights wI are kept fixed and ∑IwI = 1. To this aim,
we follow the SR scheme (eq 2) and use the gradient of the
state-average energy

g w g
i

I

I i

ISA ∑=
(7)

where gi
I is the derivative with respect to the parameter pi of the

energy of state I, which is computed from the wave function ΨI

and its derivatives, as in eq 3. Moreover, in analogy to single-
state optimization, we introduce a weighted-average overlap
matrix defined as

S w Sij

I

I ij
ISA ∑̅ = ̅

(8)

where the overlap matrix for each state is computed from the
corresponding wave function, as in eq 4. We stress that
although the state-average SR procedure is defined simply by
analogy with the single-state case, it employs the correct
gradients of the SA energy (gSA) and, therefore, at convergence,
it leads to the minimization of the state-average energy.
We alternate a number of optimization steps of the

nonlinear parameters with the optimization of the linear
coefficients ci

I, whose optimal values are the solution of the
generalized eigenvalue equations

H c E S cI
I

ICI CI= (9)

where the Hamiltonian and overlap matrix elements are
defined on the basis of the functions Di{ } and estimated
through Monte Carlo sampling. After diagonalization of eq 9,
orthogonality between the individual states is automatically
enforced. To solve the eigenvalue equation with a memory
efficient algorithm, we use the Davidson diagonalization
scheme in which the lowest energy eigenvalues are computed
without the explicit construction of the entire Hamiltonian and
overlap matrices.14 A similar procedure has recently been
followed in ref 32.
2.3. Variance Minimization. To perform variance

minimization, we can directly minimize the variance of the
state of interest

E( )2
2

σ =
⟨Ψ| ̂ − |Ψ⟩

⟨Ψ|Ψ⟩ (10)

or follow a somewhat more stable optimization procedure by
minimizing the expression

( )2
2

σ

ω

=
⟨Ψ| ̂ − |Ψ⟩

⟨Ψ|Ψ⟩ω

(11)

where the energy ω is fixed during the optimization step and
then appropriately modified to follow the current value of the

energy, as originally proposed in ref 19. Recently, the
functional Ω has been put forward

( )

( )2
ω

ω

Ω =
⟨Ψ| − ̂ |Ψ⟩

⟨Ψ| − ̂ |Ψ⟩ (12)

whose minimization is equivalent to variance minimization if ω
is eventually updated to the running value of E − σ.23

Because of its simplicity, here, we choose the functional σω
2

but also compare the convergence behavior obtained with the
functional Ω. To this aim, we use the Newton optimization
method, as in ref 22, and update the parameters as

p h g1τΔ = − −
(13)

where g is, here, the gradient of σω
2 and h is its Hessian matrix,

and the parameter τ is introduced to damp the size of the
variations.
The components of the gradient are given by

g E E
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(14)

and we discuss other possible equivalent expressions and their
relative fluctuations in Section S1. The Hessian matrix
elements require the second derivatives of the wave function
and, to avoid their computation, we follow the same
approximation strategy of the Levenberg−Marquardt algo-
rithm33 and manipulate the expression of the variance in a
somewhat different way than that proposed in refs 20, 22, 34 to
obtain the approximate expression of the Hessian matrix

h E E

E E

( )

( )

ij i
i i

j

j j

L L

L L

ω

ω

= ∂ + −
Ψ

Ψ
−

Ψ

Ψ

× ∂ + −
Ψ

Ψ
−

Ψ

Ψ
(15)

Details of the derivation and alternative expressions for the
Hessian are given in Section S1.
We use the Newton method and the Hessian h (eq 15)

when optimizing both σω
2 and the Ω functional in combination

with the corresponding gradient. Furthermore, we follow ref 23
in keeping ω fixed to an appropriate guess energy for an initial
number of minimization steps, upgrading it linearly to the
running energy (or E − σ in the case of Ω) over some
intermediate iteration steps, and then setting it equal to the
current energy estimate for the rest of the run.

3. COMPUTATIONAL DETAILS

All QMC calculations are carried out with the program
package CHAMP.35 We employ scalar-relativistic energy-
consistent HF pseudopotentials and the correlation-consistent
Gaussian basis sets specifically constructed for these
pseudopotentials.36,37 Unless otherwise specified, we use a
double-ζ basis set minimally augmented with s and p diffuse
functions on the heavy atoms and denoted here as maug-cc-
pVDZ. Basis-set convergence tests are performed with the fully
augmented double (aug-cc-pvDZ) and triple (aug-cc-pvTZ)
basis sets, in Section S4. In all cases, the exponents of the
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diffuse functions are taken from the corresponding all-electron
Dunning’s correlation-consistent basis sets.38

In the state-specific (energy and variance) optimization runs,
we sample a guiding wave function that differs from the current
wave function close to the nodes39 to guarantee finite variances
of the estimators of the gradient, overlap, and Hessian matrix
elements. In the state-average energy minimizations, we
employ equal weights for the multiple states and sample a

guiding wave function constructed as g I
I2 2Ψ = ∑ |Ψ | to ensure

that the distribution sampled has a large overlap with all states
of interest.1 All wave function parameters (Jastrow, orbital, and
CI coefficients) are optimized and the damping factor, τ, in the
SR and the Newton method is set to 0.05 and 0.1, respectively,
unless otherwise specified. In the DMC calculations, we treat
the pseudopotentials beyond the locality approximation using
the T-move algorithm40 and employ an imaginary time step of
0.05 a.u. which yields excitation energies converged to better
than 0.01 eV, as shown in Section S3.
The HF, CIS, and complete-active-space self-consistent-field

(CASSCF) calculations are carried out with the program
GAMESS(US).41,42 For the cyanine dye, we consider different
CAS expansions: a CAS(6,5) and a CAS(6,10) correlating 6 π

electrons in the orbitals constructed from the 2pz and 3pz
atomic orbitals and a truncated CAS(14,13) consisting of 6 π

and 8 σ electrons in 13 bonding and antibonding orbitals. For
the retinal model, we employ a minimal CAS(6,6) active space
of 6 π electrons in the orbitals constructed from the 2pz atomic
orbitals.
The CIPSI calculations are performed with Quantum

Package,43 and the determinantal expansions are constructed
to be eigenstates of Ŝ2. For the cyanine dye where ground and
excited states have different symmetries, we follow two paths to
construct the CIPSI expansions: (i) We perform separate
expansions for the two states starting from the corresponding
CASSCF(6,10) orbitals and match the variances of the CI
wave functions to obtain a balanced description of the states.
As shown in Table S1, we find that this procedure leads to an
automatic match of the second-order perturbation theory
(PT2) energy contributions, which are an estimate of the
errors of the wave functions with respect to the corresponding
full CI (FCI) limit. Using expansions with matched PT2
corrections has recently been shown to lead to accurate QMC
excitation energies also for a relatively small number of
determinants.9 (ii) We perform the expansion of the two states
simultaneously, using a common set of orbitals [the excited-
state CASSCF(6,10) orbitals] and obtain automatically
matched PT2 energy corrections during the expansion.9 For
the retinal model where the ground and excited states have the
same symmetry, we have only one set of orbitals for the CIPSI
expansions. In this case, we perform a simultaneous expansion
with a selection scheme that matches the CI variances and also
attempts to balance the PT2 energy contributions of the two
states (see Section S2).44

All total energies are computed on the PBE0/cc-pVQZ
ground-state geometry of the cyanine45 and retinal molecules.
The DFT geometry optimization of the retinal model is
performed with the program Gaussian.46 The coupled cluster
results are obtained with Psi4.47

4. RESULTS

We compute the lowest π → π* vertical excitation energy of
the cyanine dye (C3H3 (NH2)2

+) and the minimal model of the

retinal protonated Schiff base (C5H6NH2
+), depicted in Figure

1 and denoted as CN5 and PSB3, respectively. As already
mentioned, besides being generally challenging for electronic
structure methods,4,25−28 these examples are representative of
the two cases of a ground (S0) state and an excited (S1) state
of different (CN5) and equal (PSB3) symmetries. Correspond-
ingly, the energy minimization scheme is state-specific for CN5
and state-average for PSB3, while variance minimization
affords a state-specific optimization for both molecules, at
least in principle.

4.1. Ground and Excited States of Different
Symmetry. In Table 1, we list the ground- and excited-state
energies and corresponding excitation energies of CN5
computed in VMC and DMC with different wave functions
optimized by (state-specific) energy minimization. The
simplest case consists of a single determinant (HF) and a
HOMO−LUMO (HL) two-determinant wave function for the
ground and excited states, respectively. We then consider CIS
expansions, CAS expansions with increasing active spaces, and
balanced CIPSI expansions with different choices of the
starting orbitals, namely, independent sets for the two states
(CIPSI-SS) or a common set of orbitals (CIPSI−B1). The
excitation energies are displayed in Figure 2.
The general trend is a decrease in excitation energy toward

the extrapolated full CI (exFCI) and approximate coupled
cluster singles, doubles, and triples model (CC3) reference
values for better wave functions. As an exception, when we
move from the HF/HL to CIS wave functions, the VMC
energies of both states decrease but the corresponding
excitation energy becomes worse. With increasingly large
CAS expansions, both the total and the excitation energies
improve but the convergence is very slow. For all these wave
functions, the DMC excitation energy is lower than the VMC
value and becomes within 0.1 eV of the reference results for
the largest active spaces with about 50,000 and 70,000
determinants for the ground and excited states, respectively. By
comparison, the errors of TDDFT and CASPT2 can be as
large as 0.4 and −0.2 eV, respectively.4,45

The quality of the results exhibits a further, dramatic
improvement with the use of CIPSI expansions. The VMC and
DMC energies obtained with the smallest CIPSI wave function
are lower than the corresponding values obtained with the
largest CAS considered here. Furthermore, constructing
ground- and excited-state CIPSI expansions with similar PT2
corrections leads to a balanced description of both states and
to VMC excitation energies which change very little with
increasing expansion size, being irregularly scattered over a
small energy range of 0.08 eV. Importantly, the DMC
excitation energies are compatible with the VMC ones and
in excellent agreement with the CC3 and exFCI values. Finally,
employing two different sets of orbitals to generate the CIPSI
expansions leads to marginal differences, namely, to DMC

Figure 1. Schematic representations of the CN5 (left) and PSB3
(right) molecules. White, gray, and blue denote hydrogen, carbon,
and nitrogen, respectively.
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excitation energies of 4.856(8) and 4.882(8) eV, which are
both bracketed by the reference values.
Having verified that state-specific energy optimization in

combination with accurate wave functions allows the robust
treatment of CN5, we now employ variance minimization with
the σω

2 functional to optimize the CAS(6,5) and CAS(6,10)
wave functions of the ground and excited states. The
convergence of the corresponding VMC variances and energies
is shown in Figure 3. For the smaller CAS(6,5), we observe
that while the variance converges rather quickly, the energy
appears to do so more slowly and only after undershooting to a
value which generally depends on the statistical error and
initial conditions of the run. For an approximate wave function,
the optimal parameters in variance minimization may differ
from those obtained in energy minimization. Therefore, during
the optimization of the variance, the energy can become lower
than the final one.
As reported in Table 2, the optimal ground- and excited-

state energies are higher by about 30 mHartree than the

Table 1. VMC and DMC Total Energies (a.u.) and Excitation Energies (ΔE, eV) of CN5 Obtained for Different Wave
Functions Optimizing All Parameters (Jastrow, Orbital, and CI Coefficients) in Energy Minimization

no. det no. param VMC DMC

WF S0 S1 S0 S1 E(S0) E(S1) ΔE E(S0) E(S1) ΔE

HF/HL 1 2 516 529 −40.8372(4) −40.6460(3) 5.202(14) −40.9378(3) −40.7509(3) 5.086(11)

HF/CIS 1 980 516 4751 −40.8372(4) −40.6505(3) 5.080(14) −40.9378(3) −40.7533(3) 5.020(11)

CIS 999 980 5260 4751 −40.8444(4) −40.6505(3) 5.278(14) −40.9393(3) −40.7533(3) 5.061(11)

CAS(6,5) 52 48 567 561 −40.8468(4) −40.6583(4) 5.130(15) −40.9433(3) −40.7582(2) 5.038(10)

CAS(6,10) 7232 7168 3134 3064 −40.8498(4) −40.6628(4) 5.090(15) −40.9439(3) −40.7594(3) 5.022(11)

CAS(14,13) 48,206 72,732 9480 11,727 −40.8583(3) −40.6713(3) 5.091(10) −40.9442(7) −40.7611(7) 4.983(26)

CIPSI-SS 376 1094 1567 2609 −40.8646(3) −40.6842(3) 4.908(12) −40.9467(3) −40.7665(3) 4.905(10)

1344 4382 2478 4531 −40.8798(3) −40.7013(3) 4.857(13) −40.9502(2) −40.7711(2) 4.872(09)

2460 8782 3555 6561 −40.8896(3) −40.7099(3) 4.890(12) −40.9532(2) −40.7748(2) 4.856(09)

3913 14,114 4842 8312 −40.8941(2) −40.7167(3) 4.828(11) −40.9559(2) −40.7775(2) 4.856(08)

CIPSI−B1 2456 6120 3971 5466 −40.8847(2) −40.7053(2) 4.880(09) −40.9521(2) −40.7727(2) 4.881(09)

4829 13,130 5737 8021 −40.8945(3) −40.7150(3) 4.889(13) −40.9560(2) −40.7766(2) 4.882(08)

exFCI/aug-cc-pVDZ48 4.89

CC3/aug-cc-pVDZ 4.851

CC3/aug-cc-pVTZ 4.844

Figure 2. VMC and DMC excitation energies of CN5 calculated with
different wave functions optimized in energy minimization. The
exFCI/aug-cc-pVDZ48 and CC3/aug-cc-pVTZ reference values are
also shown. The approximate total number of determinants for the
CIPSI-SS wave functions of the ground and excited states is indicated.

Figure 3. Convergence of the VMC energy (top) and variance (bottom) of the ground (left) and excited (right) states of CN5 in the optimization
of the CAS(6,5) and CAS(6,10) wave functions in variance minimization.
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corresponding values obtained in energy minimization but the
resulting excitation energy is compatible within the statistical
error.
If we move to the larger CAS(6,10) determinantal

expansion, we find, however, that while the variance reaches
a stable value and the ground-state energy has a similar
behavior to the CAS(6,5) case, the energy of the excited state
grows steadily and it is therefore not possible to estimate the
vertical excitation energy of the system. Surprisingly, even in
the simplest case of the one-configuration (HF/HL) wave
functions, the energy of the excited state keeps increasing
slowly even after 600 iterations, as shown in Figure 4, while the
ground-state energy behaves similarly to the corresponding
CAS cases.

Importantly, the apparently unstable behavior is independ-
ent of the initial value of ω and the number of steps over which
we keep ω fixed (see Section S5). The use of smaller or larger
damping factors (i.e., τ = 0.04 and 0.2) leads to the same
pathological growth of the excited-state energy, characterized
by the same slope as a function of time, as shown in Figure S4.
Moreover, we recover the same behavior also when using a
gradient-only-based optimizer (see Figure S5). Finally,
minimizing the Ω functional instead of σω

2 yields an excited-
state energy which ultimately increases with iterations, as
shown for the excited-state HL wave function in Figure 4.

4.2. Ground and Excited States of the Same
Symmetry. For PSB3, we optimize the wave functions in
energy minimization in a state-average fashion and report the
resulting VMC and DMC total energies and vertical excitation

Table 2. VMC Energies and Variances (a.u.) and Vertical Excitation Energies (eV) of CN5 Obtained with Energy and Variance
Minimization

energy min. variance min.

E(S0) E(S1) ΔE σ2(S0) σ2(S1) E(S0) E(S1) ΔE σ2(S0) σ2(S1)

CAS(6,5) −40.8468(4) −40.6583(4) 5.13(1) 0.862 0.885 −40.8170(5) −40.6270(5) 5.17(2) 0.733 0.743

CAS(6,10) −40.8498(4) −40.6628(4) 5.09(1) 0.855 0.868 −40.8163(4) 0.731

Figure 4. Convergence of VMC energy of the ground (left) and excited (right) states of CN5 in the optimization of the HF/HL wave functions
within variance minimization with the σω

2 (our default) and the Ω functional.

Table 3. VMC and DMC Total Energies (a.u.) and Excitation Energies (ΔE, eV) of PSB3 Obtained for Different Wave
Functions Optimizing All Parameters (Jastrow, Orbital, and CI Coefficients) in Energy Minimization

VMC DMC

WF no. det no. param E(S0) E(S1) ΔE E(S0) E(S1) ΔE

CAS(6,6) 400 1645 −42.8091(2) −42.6471(2) 4.409(9) −42.9118(2) −42.7541(2) 4.293(6)

CIPSI 422 4011 −42.8174(2) −42.6623(2) 4.221(9) −42.9133(2) −42.7578(2) 4.233(6)

1158 5968 −42.8297(2) −42.6735(2) 4.252(9) −42.9160(2) −42.7609(2) 4.221(6)

2579 8106 −42.8357(2) −42.6796(2) 4.247(9) −42.9169(2) −42.7621(2) 4.214(6)

CC3/aug-cc-pVDZ 4.19

CC3/aug-cc-pVTZ 4.16

Figure 5. Convergence of the VMC energy of the ground (red) and excited (blue) states of PSB3 in the optimization of the RHF/HL and
CAS(6,6) wave functions within variance minimization.
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energies in Table 3. As in the CN5 case, CIPSI wave functions
are superior to CAS expansions of similar size, and with only
about 400 determinants, the use of CIPSI yields not only lower
total energies but also a VMC vertical excitation energy, in
good agreement with the CC3 reference, largely correcting the
error of 0.25 eV obtained with the CAS(6,6) wave function.
For all CIPSI expansions, the DMC excitation energies are
always quite close to the correspondent VMC results and, for
the larger expansions, within 0.05 eV of the CC3 value.
When we perform state-specific variance minimization, we

encounter great difficulties in the convergence of the energies,
as we show for the HF/HL and CAS(6,6) wave functions in
Figure 5. Different from CN5, we find, in general, that not only
the energy of the excited state but also that of the ground state
grows steadily with the iteration number.

5. DISCUSSION AND CONCLUSIONS

While our results confirm the high accuracy reachable in QMC
with energy minimization, they evidence severe problems in
variance minimization which, in most cases, preclude the
estimation of the excitation energy. To gain a better
understanding of the troublesome behavior of the energy
during variance minimization, we further investigate the simple
case of the HL wave function of CN5 (Figure 4) and find that
the energy of the state drifts to higher values during variance
minimization also when one optimizes only the LUMO orbital.
Therefore, because optimization of an orbital can be achieved
by mixing it with the unoccupied ones of the same symmetry,
we can recast the LUMO optimization into the linear variation
of the CI coefficients of the single excitations out of the
LUMO orbital, which amount to only 12 additional CSFs in
our basis set. With such a small expansion, we can then
diagonalize the Hamiltonian on the basis of the CSFs times the
Jastrow factor to estimate its 13 eigenvalues and eigenvectors
and work directly on the basis of the eigenstates to assess the
behavior of variance minimization when starting from the
states which are optimal for energy minimization.
In Figure 6, we show the evolution of the VMC variance and

energy for four variance minimization runs in which we start
from different eigenvectors, taking the corresponding eigen-
values as the initial target energies ω. In particular, we consider
the lowest state in B1 symmetry and the second, fourth, and
thirteenth (corresponding to the highest energy) states. We
note that because our states are not exact eigenstates of the full
Hamiltonian, the corresponding variances of the local energy
are non-zero and are spread over about 0.5 a.u. with the lowest
value in correspondence to the second state. In principle, one
would expect to find a feature of the variance landscape
ideally a local minimumnear each of the approximate
eigenstates because the functionals σω

2 and Ω are designed to
select a particular state through the initial value of ω and
minimize the variance of this state. Here, the selection of the
state is further facilitated starting each run precisely from the
chosen eigenstate, and variance minimization should perform
minor adjustments of the initial parameters from their optimal
values for energy.
The behavior illustrated in Figure 6 is totally different, with

all optimization runs leaking down to successive lower-variance
states and eventually converging to the absolute minimum
corresponding to the second eigenstate. The staircase shape of
the variance evolution points to the presence of flat regions of
the variance landscape close to the eigenstates, from which the
optimization can eventually escape. This is further corrobo-

rated if we follow the evolution of the CI coefficients, as shown
starting from the highest-energy state in Figure 7: the initial
coefficient quickly decreases to zero and other eigenstates
become populated until convergence on the second state. In
proximity of some eigenstates, the variance displays a more
pronounced plateau, where the system spends enough time to
acquire the full character of this particular state. It is also
interesting to note that the states are populated sequentially
with the order determined by decreasing energies. We stress

Figure 6. Convergence of the VMC variance (top) and energy
(bottom) of CN5 in the CI optimization of a small expansion (see
text) with variance minimization. The horizontal lines in the energy
plot correspond to the eigenvalues in this reduced space, and the
colored ones are the eigenstates used as the starting point in four
optimization runs. The damping factor used in the Newton method is
τ = 0.2.

Figure 7. Evolution of the square of the CI coefficients ci
2 (offset by i

for clarity) of the small expansion of CN5 during variance
minimization, for the run starting from the 13th eigenvector; in the
inset, the evolution of the energy is replicated to emphasize flat
regions in the energy landscape close to an eigenstate (i.e., when the
corresponding ci ≈ 1).
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that we observe a similar behavior of the variance also when
using the Ω functional starting from the same set of
approximate eigenstates (see Figure S6).
In Figure 8, we investigate the impact of the statistical error

on the loss of the selected state. In particular, we focus on the
evolution of the variance and the energy starting from the 4th
eigenvector for different lengths of the VMC runs used to
compute the gradient and Hessian matrix. The shortest run
(larger statistical error) loses the target state in a slightly
smaller number of steps. However, the other runs give very
similar results, suggesting that even longer VMC runs would
not stabilize the target state.
This simple wave function of CN5 is an explicit instance of

missing one−to−one correspondence between minima of the
variance and approximate eigenstates. Even if the actual
number of minima and their correspondence to particular
eigenstates remain unknown, in general, the understanding
gained here clearly applies to the behavior that we have
observed for more complicated wave functions. As an explicit
example, we revisit the very problematic optimization of the
excited-state CAS(6,10) wave function (Figure 3) and perform
a much longer calculation, finding that the energy eventually
converges, as shown in Figure 9. For the final set of Jastrow
and orbital parameters, we determine the eigenvalues in the
linear space of the determinants times the Jastrow factor and
recover a similar behavior to what was observed in the simple
example: the minimization of σω

2 brings the system
approximately to an eigenstate with a lower variance, which
is, in this case, the 4th one.
By systematically improving the wave function, it is possible,

in principle, to approach the exact eigenstate and its zero-
variance property, thus recovering the corresponding minimum
in the variance landscape. However, a CIPSI expansion which
gives excellent results in energy minimization does not always
prove sufficient to stabilize variance minimization (see Section
S9). In general, going to extended determinantal expansions

for the sake of a stable variance minimization, when energy
minimization results are already satisfactory, appears unprac-
tical, if feasible at all.
In summary, we have shown that the combination of energy

minimization with an appropriate choice of the ground- and
excited-state wave functions via a balanced CIPSI procedure
leads to excitation energies that are in excellent agreement
already at the VMC level with the reference values. In
particular, we obtained a robust convergence of the total
ground- and excited-state energies and a very accurate
excitation energy not only in the easier state-specific case of
CN5 but also when employing energy minimization in a state-
average fashion for PSB3. On the other hand, we encountered
severe problems when employing variance minimization
because over sufficiently long optimization runs, one may
lose the state of interest in favor of a state with lower variance,
as we clearly demonstrated with a simple but realistic example.
Even though, theoretically, the functionals σω

2 and Ω have a
built-in possibility to target the energy of a specific state, in
practice, this is generally not sufficient to maintain the
parameters close to the desired local minimum of the variance.
Therefore, these considerations lead to the conclusion that
with the present functionals and no a priori knowledge of the
parameter landscape of the variance for the system of interest,
energy minimization is a safer and more stable procedure.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00147.

Derivation and discussion of the expressions of the
gradient and approximate Hessian of the variance; CIPSI
energies for various expansions; basis-set dependence of
the VMC and DMC excitation energies; DMC
excitation energy versus time step; dependence of
variance minimization on the choice of ω, number of

Figure 8. Convergence of the variance (left) and energy (right) for different lengths of the Monte Carlo runs used to compute the gradient and
Hessian matrix during optimization, starting from the 4th eigenvector. NMC is the number of Monte Carlo steps used in Figure 6.

Figure 9. Variance (left) and energy (right) convergence for the optimization of the excited state of the CAS(6,10) wave function. The horizontal
lines in the energy plot correspond to the first eigenvalue roots obtained with the Davidson optimization.
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