000877951 001__ 877951
000877951 005__ 20240712084523.0
000877951 0247_ $$2doi$$a10.1039/D0MA00355G
000877951 0247_ $$2Handle$$a2128/25733
000877951 0247_ $$2WOS$$aWOS:000613921500020
000877951 037__ $$aFZJ-2020-02530
000877951 082__ $$a540
000877951 1001_ $$0P:(DE-HGF)0$$aCardenas-Morcoso, Drialys$$b0
000877951 245__ $$aAn integrated photoanode based on non-critical raw materials for robust solar water splitting
000877951 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2020
000877951 3367_ $$2DRIVER$$aarticle
000877951 3367_ $$2DataCite$$aOutput Types/Journal article
000877951 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600949897_17524
000877951 3367_ $$2BibTeX$$aARTICLE
000877951 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877951 3367_ $$00$$2EndNote$$aJournal Article
000877951 520__ $$aHerein, we have developed an integrated photoanode for solar water splitting based on an “Earth-abundant” Ni–Fe based electrocatalyst combined with a versatile multijunction Si-based photovoltaic device, designed in such a way to allow a direct coupling with the electrocatalyst with minimal losses. The water oxidation catalyst was prepared by electrochemical deposition of iron on a nickel foil, followed by thermal annealing, leading to the formation of NiO, α-Fe2O3, and NiFe2O4 phases. Detailed structural and surface characterization revealed the effect of the addition of different Fe contents and the subsequent implications on the electrocatalytic performance. The optimized integrated photoanode delivered a maximum photocurrent density of 6.2 mA cm−2 at 0 V applied bias, which corresponds to a 7.7% of Solar-To-Hydrogen conversion efficiency, which remained stable for more than 20 hours. These results pave the way towards large-scale, efficient and low-cost solar energy conversion solutions based on non-critical raw materials.
000877951 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000877951 588__ $$aDataset connected to CrossRef
000877951 7001_ $$00000-0002-9664-4665$$aGarcía-Tecedor, Miguel$$b1
000877951 7001_ $$0P:(DE-Juel1)130268$$aMerdzhanova, Tsvetelina$$b2$$ufzj
000877951 7001_ $$0P:(DE-Juel1)130297$$aSmirnov, Vladimir$$b3$$ufzj
000877951 7001_ $$0P:(DE-Juel1)130238$$aFinger, Friedhelm$$b4$$ufzj
000877951 7001_ $$0P:(DE-HGF)0$$aKaiser, Bernhard$$b5
000877951 7001_ $$0P:(DE-HGF)0$$aJaegermann, Wolfram$$b6
000877951 7001_ $$00000-0002-4522-3174$$aGimenez, Sixto$$b7$$eCorresponding author
000877951 773__ $$0PERI:(DE-600)3031236-X$$a10.1039/D0MA00355G$$gp. 10.1039.D0MA00355G$$n5$$p1202-1211$$tMaterials advances$$v1$$x2633-5409$$y2020
000877951 8564_ $$uhttps://juser.fz-juelich.de/record/877951/files/d0ma00355g.pdf$$yOpenAccess
000877951 8564_ $$uhttps://juser.fz-juelich.de/record/877951/files/d0ma00355g.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877951 909CO $$ooai:juser.fz-juelich.de:877951$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130268$$aForschungszentrum Jülich$$b2$$kFZJ
000877951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130297$$aForschungszentrum Jülich$$b3$$kFZJ
000877951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130238$$aForschungszentrum Jülich$$b4$$kFZJ
000877951 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000877951 9141_ $$y2020
000877951 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877951 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000877951 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000877951 9801_ $$aFullTexts
000877951 980__ $$ajournal
000877951 980__ $$aVDB
000877951 980__ $$aUNRESTRICTED
000877951 980__ $$aI:(DE-Juel1)IEK-5-20101013
000877951 981__ $$aI:(DE-Juel1)IMD-3-20101013