001     877951
005     20240712084523.0
024 7 _ |a 10.1039/D0MA00355G
|2 doi
024 7 _ |a 2128/25733
|2 Handle
024 7 _ |a WOS:000613921500020
|2 WOS
037 _ _ |a FZJ-2020-02530
082 _ _ |a 540
100 1 _ |a Cardenas-Morcoso, Drialys
|0 P:(DE-HGF)0
|b 0
245 _ _ |a An integrated photoanode based on non-critical raw materials for robust solar water splitting
260 _ _ |a Cambridge
|c 2020
|b Royal Society of Chemistry
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600949897_17524
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Herein, we have developed an integrated photoanode for solar water splitting based on an “Earth-abundant” Ni–Fe based electrocatalyst combined with a versatile multijunction Si-based photovoltaic device, designed in such a way to allow a direct coupling with the electrocatalyst with minimal losses. The water oxidation catalyst was prepared by electrochemical deposition of iron on a nickel foil, followed by thermal annealing, leading to the formation of NiO, α-Fe2O3, and NiFe2O4 phases. Detailed structural and surface characterization revealed the effect of the addition of different Fe contents and the subsequent implications on the electrocatalytic performance. The optimized integrated photoanode delivered a maximum photocurrent density of 6.2 mA cm−2 at 0 V applied bias, which corresponds to a 7.7% of Solar-To-Hydrogen conversion efficiency, which remained stable for more than 20 hours. These results pave the way towards large-scale, efficient and low-cost solar energy conversion solutions based on non-critical raw materials.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a García-Tecedor, Miguel
|0 0000-0002-9664-4665
|b 1
700 1 _ |a Merdzhanova, Tsvetelina
|0 P:(DE-Juel1)130268
|b 2
|u fzj
700 1 _ |a Smirnov, Vladimir
|0 P:(DE-Juel1)130297
|b 3
|u fzj
700 1 _ |a Finger, Friedhelm
|0 P:(DE-Juel1)130238
|b 4
|u fzj
700 1 _ |a Kaiser, Bernhard
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Jaegermann, Wolfram
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gimenez, Sixto
|0 0000-0002-4522-3174
|b 7
|e Corresponding author
773 _ _ |a 10.1039/D0MA00355G
|g p. 10.1039.D0MA00355G
|0 PERI:(DE-600)3031236-X
|n 5
|p 1202-1211
|t Materials advances
|v 1
|y 2020
|x 2633-5409
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/877951/files/d0ma00355g.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/877951/files/d0ma00355g.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877951
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130268
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130238
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 3.0
|0 LIC:(DE-HGF)CCBYNC3
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21