000877980 001__ 877980
000877980 005__ 20210130005317.0
000877980 0247_ $$2doi$$a10.1088/1361-6668/ab6ee5
000877980 0247_ $$2ISSN$$a0953-2048
000877980 0247_ $$2ISSN$$a1361-6668
000877980 0247_ $$2Handle$$a2128/25725
000877980 0247_ $$2WOS$$aWOS:000525650500001
000877980 037__ $$aFZJ-2020-02554
000877980 041__ $$aEnglish
000877980 082__ $$a530
000877980 1001_ $$00000-0001-6017-0739$$aCelentano, G.$$b0$$eCorresponding author
000877980 245__ $$aYBa 2 Cu 3 O 7−x films with Ba 2 Y(Nb,Ta)O 6 nanoinclusions for high-field applications
000877980 260__ $$aBristol$$bIOP Publ.$$c2020
000877980 3367_ $$2DRIVER$$aarticle
000877980 3367_ $$2DataCite$$aOutput Types/Journal article
000877980 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602057179_7092
000877980 3367_ $$2BibTeX$$aARTICLE
000877980 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877980 3367_ $$00$$2EndNote$$aJournal Article
000877980 520__ $$aThe structural and transport properties of YBa2Cu3O7−x films grown by pulsed laser deposition with mixed 2.5 mol% Ba2YTaO6 (BYTO) and 2.5 mol% Ba2YNbO6 (BYNO) double-perovskite secondary phases are investigated in an extended film growth rate, R = 0.02–1.8 nm s−1. The effect of R on the film microstructure analyzed by TEM techniques shows an evolution from sparse and straight to denser, thinner and splayed continuous columns, with mixed BYNO + BYTO (BYNTO) composition, as R increases from 0.02 nm s−1 to 1.2 nm s−1. This microstructure results in very efficient flux pinning at 77 K, leading to a remarkable improvement in the critical current density (Jc) behaviour, with the maximum pinning force density Fp(Max) = 13.5 GN m−3 and the irreversibility field in excess of 11 T. In this range, the magnetic field values at which the Fp is maximized varies from 1 T to 5 T, being related to the BYNTO columnar density. The film deposited when R = 0.3 nm s−1 exhibits the best performances over the whole temperature and magnetic field ranges, achieving Fp(Max) = 900 GN m−3 at 10 K and 12 T. At higher rates, R > 1.2 nm s−1, BYNTO columns show a meandering nature and are prone to form short nanorods. In addition, in the YBCO film matrix a more disordered structure with a high density of short stacking faults is observed. From the analysis of the Fp(H, T) curves it emerges that in films deposited at the high R limit, the vortex pinning is no longer dominated by BYNTO columnar defects, but by a new mechanism showing the typical temperature scaling law. Even though this microstructure produces a limited improvement at 77 K, it exhibits a strong Jc improvement at lower temperature with Fp = 700 GN m−3 at 10 K, 12 T and 900 GN m−3 at 4.2 K, 18 T.
000877980 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000877980 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x1
000877980 588__ $$aDataset connected to CrossRef
000877980 7001_ $$00000-0002-7710-5084$$aRizzo, F.$$b1
000877980 7001_ $$00000-0002-0942-0752$$aAugieri, A.$$b2
000877980 7001_ $$00000-0002-4148-1010$$aMancini, A.$$b3
000877980 7001_ $$0P:(DE-HGF)0$$aPinto, V.$$b4
000877980 7001_ $$0P:(DE-HGF)0$$aRufoloni, A.$$b5
000877980 7001_ $$00000-0003-4628-4312$$aVannozzi, A.$$b6
000877980 7001_ $$00000-0003-4987-6620$$aMacManus-Driscoll, J. L.$$b7
000877980 7001_ $$00000-0002-5222-7034$$aFeighan, J.$$b8
000877980 7001_ $$0P:(DE-HGF)0$$aKursumovic, A.$$b9
000877980 7001_ $$0P:(DE-Juel1)173622$$aMeledin, A.$$b10
000877980 7001_ $$0P:(DE-Juel1)130824$$aMayer, J.$$b11
000877980 7001_ $$0P:(DE-HGF)0$$aVan Tendeloo, G.$$b12
000877980 773__ $$0PERI:(DE-600)1361475-7$$a10.1088/1361-6668/ab6ee5$$gVol. 33, no. 4, p. 044010 -$$n4$$p044010 -$$tSuperconductor science and technology$$v33$$x1361-6668$$y2020
000877980 8564_ $$uhttps://juser.fz-juelich.de/record/877980/files/Celentano%2Bet%2Bal_2020_Supercond._Sci._Technol._10.1088_1361-6668_ab6ee5.pdf$$yPublished on 2020-02-20. Available in OpenAccess from 2021-02-20.
000877980 8564_ $$uhttps://juser.fz-juelich.de/record/877980/files/Celentano_2020_Supercond._Sci._Technol._33_044010.pdf$$yRestricted
000877980 8564_ $$uhttps://juser.fz-juelich.de/record/877980/files/Celentano%2Bet%2Bal_2020_Supercond._Sci._Technol._10.1088_1361-6668_ab6ee5.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-02-20. Available in OpenAccess from 2021-02-20.
000877980 8564_ $$uhttps://juser.fz-juelich.de/record/877980/files/Celentano_2020_Supercond._Sci._Technol._33_044010.pdf?subformat=pdfa$$xpdfa$$yRestricted
000877980 909CO $$ooai:juser.fz-juelich.de:877980$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000877980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173622$$aForschungszentrum Jülich$$b10$$kFZJ
000877980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b11$$kFZJ
000877980 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000877980 9141_ $$y2020
000877980 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-15
000877980 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-15
000877980 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-15
000877980 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000877980 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877980 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-15
000877980 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-15
000877980 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-15
000877980 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-15
000877980 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-15
000877980 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-15
000877980 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUPERCOND SCI TECH : 2018$$d2020-01-15
000877980 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-15$$wger
000877980 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-15
000877980 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-15$$wger
000877980 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-15
000877980 920__ $$lyes
000877980 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000877980 980__ $$ajournal
000877980 980__ $$aVDB
000877980 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000877980 980__ $$aUNRESTRICTED
000877980 9801_ $$aFullTexts