Home > Publications database > YBa 2 Cu 3 O 7−x films with Ba 2 Y(Nb,Ta)O 6 nanoinclusions for high-field applications > print |
001 | 877980 | ||
005 | 20210130005317.0 | ||
024 | 7 | _ | |a 10.1088/1361-6668/ab6ee5 |2 doi |
024 | 7 | _ | |a 0953-2048 |2 ISSN |
024 | 7 | _ | |a 1361-6668 |2 ISSN |
024 | 7 | _ | |a 2128/25725 |2 Handle |
024 | 7 | _ | |a WOS:000525650500001 |2 WOS |
037 | _ | _ | |a FZJ-2020-02554 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Celentano, G. |0 0000-0001-6017-0739 |b 0 |e Corresponding author |
245 | _ | _ | |a YBa 2 Cu 3 O 7−x films with Ba 2 Y(Nb,Ta)O 6 nanoinclusions for high-field applications |
260 | _ | _ | |a Bristol |c 2020 |b IOP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1602057179_7092 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The structural and transport properties of YBa2Cu3O7−x films grown by pulsed laser deposition with mixed 2.5 mol% Ba2YTaO6 (BYTO) and 2.5 mol% Ba2YNbO6 (BYNO) double-perovskite secondary phases are investigated in an extended film growth rate, R = 0.02–1.8 nm s−1. The effect of R on the film microstructure analyzed by TEM techniques shows an evolution from sparse and straight to denser, thinner and splayed continuous columns, with mixed BYNO + BYTO (BYNTO) composition, as R increases from 0.02 nm s−1 to 1.2 nm s−1. This microstructure results in very efficient flux pinning at 77 K, leading to a remarkable improvement in the critical current density (Jc) behaviour, with the maximum pinning force density Fp(Max) = 13.5 GN m−3 and the irreversibility field in excess of 11 T. In this range, the magnetic field values at which the Fp is maximized varies from 1 T to 5 T, being related to the BYNTO columnar density. The film deposited when R = 0.3 nm s−1 exhibits the best performances over the whole temperature and magnetic field ranges, achieving Fp(Max) = 900 GN m−3 at 10 K and 12 T. At higher rates, R > 1.2 nm s−1, BYNTO columns show a meandering nature and are prone to form short nanorods. In addition, in the YBCO film matrix a more disordered structure with a high density of short stacking faults is observed. From the analysis of the Fp(H, T) curves it emerges that in films deposited at the high R limit, the vortex pinning is no longer dominated by BYNTO columnar defects, but by a new mechanism showing the typical temperature scaling law. Even though this microstructure produces a limited improvement at 77 K, it exhibits a strong Jc improvement at lower temperature with Fp = 700 GN m−3 at 10 K, 12 T and 900 GN m−3 at 4.2 K, 18 T. |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 0 |
536 | _ | _ | |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717) |0 G:(EU-Grant)823717 |c 823717 |f H2020-INFRAIA-2018-1 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Rizzo, F. |0 0000-0002-7710-5084 |b 1 |
700 | 1 | _ | |a Augieri, A. |0 0000-0002-0942-0752 |b 2 |
700 | 1 | _ | |a Mancini, A. |0 0000-0002-4148-1010 |b 3 |
700 | 1 | _ | |a Pinto, V. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Rufoloni, A. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Vannozzi, A. |0 0000-0003-4628-4312 |b 6 |
700 | 1 | _ | |a MacManus-Driscoll, J. L. |0 0000-0003-4987-6620 |b 7 |
700 | 1 | _ | |a Feighan, J. |0 0000-0002-5222-7034 |b 8 |
700 | 1 | _ | |a Kursumovic, A. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Meledin, A. |0 P:(DE-Juel1)173622 |b 10 |
700 | 1 | _ | |a Mayer, J. |0 P:(DE-Juel1)130824 |b 11 |
700 | 1 | _ | |a Van Tendeloo, G. |0 P:(DE-HGF)0 |b 12 |
773 | _ | _ | |a 10.1088/1361-6668/ab6ee5 |g Vol. 33, no. 4, p. 044010 - |0 PERI:(DE-600)1361475-7 |n 4 |p 044010 - |t Superconductor science and technology |v 33 |y 2020 |x 1361-6668 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/877980/files/Celentano%2Bet%2Bal_2020_Supercond._Sci._Technol._10.1088_1361-6668_ab6ee5.pdf |y Published on 2020-02-20. Available in OpenAccess from 2021-02-20. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/877980/files/Celentano_2020_Supercond._Sci._Technol._33_044010.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/877980/files/Celentano%2Bet%2Bal_2020_Supercond._Sci._Technol._10.1088_1361-6668_ab6ee5.pdf?subformat=pdfa |x pdfa |y Published on 2020-02-20. Available in OpenAccess from 2021-02-20. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/877980/files/Celentano_2020_Supercond._Sci._Technol._33_044010.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:877980 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)173622 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)130824 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-15 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-15 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-15 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-15 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-15 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-15 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SUPERCOND SCI TECH : 2018 |d 2020-01-15 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-01-15 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-15 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-15 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-15 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-2-20170209 |k ER-C-2 |l Materialwissenschaft u. Werkstofftechnik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ER-C-2-20170209 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|