001 | 877985 | ||
005 | 20240711113523.0 | ||
024 | 7 | _ | |a 10.1016/j.nme.2020.100752 |2 doi |
024 | 7 | _ | |a 2128/25291 |2 Handle |
024 | 7 | _ | |a WOS:000572929800005 |2 WOS |
037 | _ | _ | |a FZJ-2020-02559 |
082 | _ | _ | |a 624 |
100 | 1 | _ | |a Houben, Anne |0 P:(DE-Juel1)157772 |b 0 |e Corresponding author |
245 | _ | _ | |a Tungsten nitride as tritium permeation barrier |
260 | _ | _ | |a Amsterdam [u.a.] |c 2020 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1594901895_3303 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The development and application of robust tritium permeation barrier coatings is crucial for a safe and economic fusion reactor operation. Three different tungsten and tungsten nitride layers on Eurofer97 substrates were investigated by deuterium permeation measurements and compared. The microstructure and crystal structure was characterized before and after permeation measurements. The layer permeability is independent of the layer thickness and substrate of the sample. For a reliable comparison of different tritium permeation barrier coatings, the layer permeability of each layer was calculated. With this layer permeability, the permeation flux through potential fusion device components can be estimated. As examples, the permeation flux through a 0.5 cm thick steel component can be reduced by two orders of magnitude by a 2 m thick WN layer and nearly four orders of magnitude by a 2 m non-cracked tungsten layer. |
536 | _ | _ | |a 113 - Methods and Concepts for Material Development (POF3-113) |0 G:(DE-HGF)POF3-113 |c POF3-113 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Rasiński, M. |0 P:(DE-Juel1)162160 |b 1 |
700 | 1 | _ | |a Gao, Liang |0 P:(DE-Juel1)184620 |b 2 |u fzj |
700 | 1 | _ | |a Linsmeier, Ch. |0 P:(DE-Juel1)157640 |b 3 |
773 | _ | _ | |a 10.1016/j.nme.2020.100752 |g Vol. 24, p. 100752 - |0 PERI:(DE-600)2808888-8 |p 100752 - |t Nuclear materials and energy |v 24 |y 2020 |x 2352-1791 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/877985/files/1-s2.0-S2352179120300284-main.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/877985/files/Postprint__ahouben_rev_non_marked.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/877985/files/Postprint__ahouben_rev_non_marked.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/877985/files/1-s2.0-S2352179120300284-main.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:877985 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)157772 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)162160 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)184620 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)157640 |
913 | 1 | _ | |a DE-HGF |l Energieeffizienz, Materialien und Ressourcen |1 G:(DE-HGF)POF3-110 |0 G:(DE-HGF)POF3-113 |2 G:(DE-HGF)POF3-100 |v Methods and Concepts for Material Development |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-01-14 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-01-14 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-14 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-14 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2020-01-14 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |f 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-14 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|