001     878003
005     20210130005322.0
024 7 _ |a 10.1016/j.firesaf.2020.103154
|2 doi
024 7 _ |a 0379-7112
|2 ISSN
024 7 _ |a 1873-7226
|2 ISSN
024 7 _ |a 2128/25299
|2 Handle
024 7 _ |a altmetric:83749827
|2 altmetric
024 7 _ |a WOS:000552648600011
|2 WOS
037 _ _ |a FZJ-2020-02577
082 _ _ |a 690
100 1 _ |a Schröder, Benjamin
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a A map representation of the ASET-RSET concept
260 _ _ |a New York, NY [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1594989151_7849
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Assessing life safety by comparing the available safe egress time (ASET) and the required safe egress time (RSET) is a prominent task in performance-based fire safety design. The calculation of a safety margin by subtracting RSET from ASET is a straightforward concept and is easy to understand. However, when the concept was developed, fire and evacuation models only provided punctual information derived from experimental correlations or hand calculations. Nowadays, complex computer models for fire and evacuation dynamics have become state of the art. However, the ASET-RSET concept has not adapted to these developments. While uncertainties related to the model input and the model application are widely recognised, uncertainties emerging from analysing the output only play a subordinate role.Therefore, we introduce a map representation of ASET and RSET. The maps are generated by a spatial evaluation of the quantities used to determine ASET and RSET. Based on that, a difference map is introduced to represent the safety margin throughout the entire domain. Finally, a method is proposed to reduce the high information content of the difference maps to one scalar measure of consequences. This facilitates multivariate or risk-based analysis approaches and thus is able to reduce the uncertainties in performance-based design.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Arnold, Lukas
|0 P:(DE-Juel1)132044
|b 1
700 1 _ |a Seyfried, Armin
|0 P:(DE-Juel1)132266
|b 2
773 _ _ |a 10.1016/j.firesaf.2020.103154
|g Vol. 115, p. 103154 -
|0 PERI:(DE-600)1483569-1
|p 103154 -
|t Fire safety journal
|v 115
|y 2020
|x 0379-7112
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/878003/files/1-s2.0-S0379711219307209-main.pdf
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/878003/files/2020_ASET_RSET_Maps_PREPRINT.pdf
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/878003/files/1-s2.0-S0379711219307209-main.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/878003/files/2020_ASET_RSET_Maps_PREPRINT.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878003
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132044
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132266
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2019-12-20
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FIRE SAFETY J : 2018
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2019-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2019-12-20
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2019-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2019-12-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21