000878010 001__ 878010
000878010 005__ 20240711085646.0
000878010 0247_ $$2doi$$a10.1016/j.actamat.2020.02.036
000878010 0247_ $$2ISSN$$a1359-6454
000878010 0247_ $$2ISSN$$a1873-2453
000878010 0247_ $$2Handle$$a2128/25610
000878010 0247_ $$2altmetric$$aaltmetric:76495554
000878010 0247_ $$2WOS$$aWOS:000527829900013
000878010 037__ $$aFZJ-2020-02579
000878010 082__ $$a670
000878010 1001_ $$0P:(DE-Juel1)166597$$aMishra, Tarini Prasad$$b0$$eCorresponding author
000878010 245__ $$aCurrent-rate flash sintering of gadolinium doped ceria: Microstructure and Defect generation
000878010 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000878010 3367_ $$2DRIVER$$aarticle
000878010 3367_ $$2DataCite$$aOutput Types/Journal article
000878010 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599631100_19835
000878010 3367_ $$2BibTeX$$aARTICLE
000878010 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878010 3367_ $$00$$2EndNote$$aJournal Article
000878010 520__ $$aIn current-rate flash-sintering experiments the current is injected into the specimen from the very start and then increased at a constant rate, while the furnace is held at a constant temperature. The power supply remains under current control. The flash is induced at low current densities which reduces local heating at the electrodes. It leads to a uniform grain size across the entire gage length of the dog-bone specimen. This work pertains to 10 mol.% gadolinium-doped ceria flash sintered at current-rates ranging from 50 mA min−1 to 1000 mA min−1 at a furnace temperature of 680 °C. Full densities are obtained at a current density limit of 200 mA mm–2. Densification is shown to depend only on the instantaneous value of the current density, and not on the current-rate. The grain size, however, is shown to become finer at higher current-rates. A preliminary analysis of the “energy deficit”, that is, the estimated power input corresponding to the temperature as measured with a pyrometer, and the actual power consumption, estimates that huge concentrations of Frenkel defects may be introduced in the flash process.
000878010 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000878010 536__ $$0G:(GEPRIS)274005202$$aDFG project 274005202 - SPP 1959: Manipulation of matter controlled by electric and magnetic fields: Towards novel synthesis and processing routes of inorganic materials (274005202)$$c274005202$$x1
000878010 588__ $$aDataset connected to CrossRef
000878010 7001_ $$00000-0003-3064-9460$$aNeto, Rubens Roberto Ingraci$$b1
000878010 7001_ $$00000-0001-8556-9797$$aRaj, Rishi$$b2
000878010 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b3$$ufzj
000878010 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b4$$ufzj
000878010 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2020.02.036$$gVol. 189, p. 145 - 153$$p145 - 153$$tActa materialia$$v189$$x1359-6454$$y2020
000878010 8564_ $$uhttps://juser.fz-juelich.de/record/878010/files/Pre%20print%20Manuscript.pdf$$yOpenAccess
000878010 8564_ $$uhttps://juser.fz-juelich.de/record/878010/files/Pre%20print%20Manuscript.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878010 909CO $$ooai:juser.fz-juelich.de:878010$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878010 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166597$$aForschungszentrum Jülich$$b0$$kFZJ
000878010 9101_ $$0I:(DE-HGF)0$$60000-0003-3064-9460$$a University of colorado Boulder$$b1
000878010 9101_ $$0I:(DE-HGF)0$$60000-0001-8556-9797$$a University of Colorado Boulder$$b2
000878010 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b3$$kFZJ
000878010 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b4$$kFZJ
000878010 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000878010 9141_ $$y2020
000878010 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000878010 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000878010 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-17
000878010 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-17
000878010 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-17
000878010 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2018$$d2020-01-17
000878010 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000878010 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-17
000878010 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000878010 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878010 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-17
000878010 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2018$$d2020-01-17
000878010 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000878010 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000878010 920__ $$lyes
000878010 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000878010 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000878010 9801_ $$aFullTexts
000878010 980__ $$ajournal
000878010 980__ $$aVDB
000878010 980__ $$aUNRESTRICTED
000878010 980__ $$aI:(DE-Juel1)IEK-1-20101013
000878010 980__ $$aI:(DE-82)080011_20140620
000878010 981__ $$aI:(DE-Juel1)IMD-2-20101013