000878028 001__ 878028
000878028 005__ 20240711085647.0
000878028 0247_ $$2doi$$a10.1016/j.mtla.2020.100607
000878028 0247_ $$2Handle$$a2128/25624
000878028 0247_ $$2altmetric$$aaltmetric:76016801
000878028 0247_ $$2WOS$$aWOS:000537621200031
000878028 037__ $$aFZJ-2020-02584
000878028 1001_ $$0P:(DE-HGF)0$$aMoradabadi, Ashkan$$b0
000878028 245__ $$aEffect of lattice and dopant–induced strain on the conductivity of solid electrolytes: application of the elastic dipole method
000878028 260__ $$aAmsterdam$$bElsevier$$c2020
000878028 3367_ $$2DRIVER$$aarticle
000878028 3367_ $$2DataCite$$aOutput Types/Journal article
000878028 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599653922_20792
000878028 3367_ $$2BibTeX$$aARTICLE
000878028 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878028 3367_ $$00$$2EndNote$$aJournal Article
000878028 520__ $$aHere, we studied the possibility of applying the elastic dipole method (EDM) to predict the response of defect formation and migration energy to an external strain field (ϵij) in Al-doped cubic Li6.25Al0.25La3Zr2O12 (Al-LLZO) and Li10GeP2S12 (LGPS). It is shown that EDM can quantitatively provide accurate values for Li-defect formation energy as a function of ϵij. EDM can also predict, qualitatively, how the migration barrier varies with ϵij. In both Al-LLZO and LGPS systems, the formation energy of Li vacancy decreases (increases) by applying a tensile (compressive) strain, which is because the lattice parameters tend to expand by formation of a Li vacancy. An opposite behavior is found for the formation energy of interstitial Li. Furthermore, we found that a compressive strain decreases the diffusion barrier in Al-LLZO, while it increases it in LGPS. The lowering of migration barrier in Al-LLZO is in spite of contraction of bottleneck width of Li diffusion in this system. This finding is in line with a recent experimental study. Analysis of EDM results shows that the lowering (rising) in the migration barrier of Li in Al-LLZO (LGPS) under a compressive strain is due to tendency of the system to contract (expand) Li–O (Li–S) bond lengths in the transition states where Li ions are at the bottlenecks of diffusion pathways. We finally show that the result of Li migration barrier as a function of strain in a non-doped solid electrolyte can be used to predict the global effect of substitution/doping on the conductivity of that system.
000878028 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000878028 588__ $$aDataset connected to CrossRef
000878028 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b1$$eCorresponding author
000878028 773__ $$0PERI:(DE-600)2953458-6$$a10.1016/j.mtla.2020.100607$$gVol. 9, p. 100607 -$$p100607$$tMaterialia$$v9$$x2589-1529$$y2020
000878028 8564_ $$uhttps://juser.fz-juelich.de/record/878028/files/Materialia.pdf$$yOpenAccess
000878028 8564_ $$uhttps://juser.fz-juelich.de/record/878028/files/Materialia.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878028 909CO $$ooai:juser.fz-juelich.de:878028$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878028 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b1$$kFZJ
000878028 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000878028 9141_ $$y2020
000878028 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878028 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-02
000878028 920__ $$lyes
000878028 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000878028 9801_ $$aFullTexts
000878028 980__ $$ajournal
000878028 980__ $$aVDB
000878028 980__ $$aUNRESTRICTED
000878028 980__ $$aI:(DE-Juel1)IEK-1-20101013
000878028 981__ $$aI:(DE-Juel1)IMD-2-20101013