001     878028
005     20240711085647.0
024 7 _ |a 10.1016/j.mtla.2020.100607
|2 doi
024 7 _ |a 2128/25624
|2 Handle
024 7 _ |a altmetric:76016801
|2 altmetric
024 7 _ |a WOS:000537621200031
|2 WOS
037 _ _ |a FZJ-2020-02584
100 1 _ |a Moradabadi, Ashkan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Effect of lattice and dopant–induced strain on the conductivity of solid electrolytes: application of the elastic dipole method
260 _ _ |a Amsterdam
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599653922_20792
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Here, we studied the possibility of applying the elastic dipole method (EDM) to predict the response of defect formation and migration energy to an external strain field (ϵij) in Al-doped cubic Li6.25Al0.25La3Zr2O12 (Al-LLZO) and Li10GeP2S12 (LGPS). It is shown that EDM can quantitatively provide accurate values for Li-defect formation energy as a function of ϵij. EDM can also predict, qualitatively, how the migration barrier varies with ϵij. In both Al-LLZO and LGPS systems, the formation energy of Li vacancy decreases (increases) by applying a tensile (compressive) strain, which is because the lattice parameters tend to expand by formation of a Li vacancy. An opposite behavior is found for the formation energy of interstitial Li. Furthermore, we found that a compressive strain decreases the diffusion barrier in Al-LLZO, while it increases it in LGPS. The lowering of migration barrier in Al-LLZO is in spite of contraction of bottleneck width of Li diffusion in this system. This finding is in line with a recent experimental study. Analysis of EDM results shows that the lowering (rising) in the migration barrier of Li in Al-LLZO (LGPS) under a compressive strain is due to tendency of the system to contract (expand) Li–O (Li–S) bond lengths in the transition states where Li ions are at the bottlenecks of diffusion pathways. We finally show that the result of Li migration barrier as a function of strain in a non-doped solid electrolyte can be used to predict the global effect of substitution/doping on the conductivity of that system.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 1
|e Corresponding author
773 _ _ |a 10.1016/j.mtla.2020.100607
|g Vol. 9, p. 100607 -
|0 PERI:(DE-600)2953458-6
|p 100607
|t Materialia
|v 9
|y 2020
|x 2589-1529
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878028/files/Materialia.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/878028/files/Materialia.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878028
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174502
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21