000878029 001__ 878029
000878029 005__ 20240708132714.0
000878029 0247_ $$2doi$$a10.1016/j.jpowsour.2020.228348
000878029 0247_ $$2ISSN$$a0378-7753
000878029 0247_ $$2ISSN$$a1873-2755
000878029 0247_ $$2Handle$$a2128/25612
000878029 0247_ $$2WOS$$aWOS:000543866400005
000878029 037__ $$aFZJ-2020-02585
000878029 082__ $$a620
000878029 1001_ $$0P:(DE-HGF)0$$aSharma, Monika$$b0
000878029 245__ $$aPolaron transport mechanism in maricite NaFePO4: A combined experimental and simulation study
000878029 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020
000878029 3367_ $$2DRIVER$$aarticle
000878029 3367_ $$2DataCite$$aOutput Types/Journal article
000878029 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599635311_20210
000878029 3367_ $$2BibTeX$$aARTICLE
000878029 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878029 3367_ $$00$$2EndNote$$aJournal Article
000878029 520__ $$aWe report, for the first time, systematic investigations on electronic properties of maricite NaFePO4 with different crystallite sizes by a combined experimental and theoretical approach. Ac impedance spectroscopy has been used to study the polaron transport behaviour in maricite NaFePO4 structure with different crystallite sizes over a wide range of temperatures. With the decrease in crystallite size, we observe a polaronic conductivity enhancement of approximately an order of magnitude at the nanoscale level as compared with its bulk counterpart. The temperature dependent dc conductivity has been analysed within the framework of the Mott model of polaron hopping and various physical parameters relevant for the polaron hopping process were extracted. Additionally, by introducing an approximated Mott model with calculated hole polaron migration barrier from density functional theory, we evaluated the polaronic conductivity as function of crystallite size in fair agreement with experimental data. The enhanced polaronic conductivity with crystallite size reduction is found to be due to the combined effect of increased polaron concentration, reduced hopping length, and lowered migration barrier.
000878029 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000878029 588__ $$aDataset connected to CrossRef
000878029 7001_ $$0P:(DE-HGF)0$$aMurugavel, Sevi$$b1
000878029 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b2$$eCorresponding author$$ufzj
000878029 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2020.228348$$gVol. 469, p. 228348 -$$p228348 -$$tJournal of power sources$$v469$$x0378-7753$$y2020
000878029 8564_ $$uhttps://juser.fz-juelich.de/record/878029/files/JPS.pdf$$yPublished on 2020-06-12. Available in OpenAccess from 2022-06-12.
000878029 8564_ $$uhttps://juser.fz-juelich.de/record/878029/files/JPS.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-06-12. Available in OpenAccess from 2022-06-12.
000878029 909CO $$ooai:juser.fz-juelich.de:878029$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878029 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b2$$kFZJ
000878029 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000878029 9141_ $$y2020
000878029 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-03
000878029 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-03
000878029 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-03
000878029 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-03
000878029 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000878029 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878029 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-03
000878029 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2018$$d2020-01-03
000878029 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-03
000878029 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-03
000878029 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-03
000878029 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-03
000878029 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2018$$d2020-01-03
000878029 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-03
000878029 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-03
000878029 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-03
000878029 920__ $$lyes
000878029 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000878029 9801_ $$aFullTexts
000878029 980__ $$ajournal
000878029 980__ $$aVDB
000878029 980__ $$aUNRESTRICTED
000878029 980__ $$aI:(DE-Juel1)IEK-1-20101013
000878029 981__ $$aI:(DE-Juel1)IMD-2-20101013