000878030 001__ 878030
000878030 005__ 20240708132714.0
000878030 0247_ $$2doi$$a10.1039/D0TA02319A
000878030 0247_ $$2ISSN$$a2050-7488
000878030 0247_ $$2ISSN$$a2050-7496
000878030 0247_ $$2Handle$$a2128/25654
000878030 0247_ $$2WOS$$aWOS:000548452100041
000878030 037__ $$aFZJ-2020-02586
000878030 082__ $$a530
000878030 1001_ $$0P:(DE-Juel1)178838$$aKuo, Liang-Yin$$b0$$ufzj
000878030 245__ $$aOn the origin of non-monotonic variation of the lattice parameters of LiNi 1/3 Co 1/3 Mn 1/3 O 2 with lithiation/delithiation: a first-principles study
000878030 260__ $$aLondon$$bRSC$$c2020
000878030 3367_ $$2DRIVER$$aarticle
000878030 3367_ $$2DataCite$$aOutput Types/Journal article
000878030 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615814409_29418
000878030 3367_ $$2BibTeX$$aARTICLE
000878030 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878030 3367_ $$00$$2EndNote$$aJournal Article
000878030 520__ $$aHere, we show that the non-monotonic variation of lattice parameters of LixNi1/3Co1/3Mn1/3O2 during delithiation/lithiation can be predicted in good agreement with experimental results by applying an approach combining an extensive set of Coulomb energy and density functional theory calculations. Moreover, the influence of choosing an exchange-correlation functional on our results is discussed. By analyzing the local spin polarization, spin density plot, density of states, and Bader charges, the reason behind this behavior is explained. It is found that the presence/absence of electrostatic Li–O interactions and Jahn–Teller distortion and oxidation of O anions are key parameters to control the lattice parameter changes. In particular, the contraction of c for 0.5 > x, which has not been fully explained so far, is found to be due to the vanishing of the Jahn–Teller distortion in NiO6 octahedra. The O3 → O1 phase transition for low concentrations of Li, which has also not been justified until now, is shown to be driven by strengthening of ionic bonds and electrostatic interaction in the latter phase.
000878030 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000878030 536__ $$0G:(DE-Juel1)jiek12_20190501$$aSimulation-guided Development of Cathode Materials (jiek12_20190501)$$cjiek12_20190501$$fSimulation-guided Development of Cathode Materials$$x1
000878030 588__ $$aDataset connected to CrossRef
000878030 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b1$$ufzj
000878030 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b2$$eCorresponding author
000878030 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D0TA02319A$$gVol. 8, no. 27, p. 13832 - 13841$$n27$$p13832 - 13841$$tJournal of materials chemistry / A Materials for energy and sustainability$$v8$$x2050-7496$$y2020
000878030 8564_ $$uhttps://juser.fz-juelich.de/record/878030/files/JMCA.pdf$$yPublished on 2020-06-04. Available in OpenAccess from 2021-06-04.
000878030 8564_ $$uhttps://juser.fz-juelich.de/record/878030/files/JMCA.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-06-04. Available in OpenAccess from 2021-06-04.
000878030 909CO $$ooai:juser.fz-juelich.de:878030$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878030 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178838$$aForschungszentrum Jülich$$b0$$kFZJ
000878030 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b1$$kFZJ
000878030 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b2$$kFZJ
000878030 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000878030 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000878030 9141_ $$y2020
000878030 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-28
000878030 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-28
000878030 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-28
000878030 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878030 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-28
000878030 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2018$$d2020-02-28
000878030 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-28
000878030 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-28
000878030 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-28
000878030 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-02-28$$wger
000878030 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2018$$d2020-02-28
000878030 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-02-28$$wger
000878030 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-28
000878030 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-28
000878030 920__ $$lyes
000878030 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000878030 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000878030 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000878030 9801_ $$aFullTexts
000878030 980__ $$ajournal
000878030 980__ $$aVDB
000878030 980__ $$aI:(DE-Juel1)IEK-1-20101013
000878030 980__ $$aI:(DE-82)080011_20140620
000878030 980__ $$aI:(DE-82)080012_20140620
000878030 980__ $$aUNRESTRICTED
000878030 981__ $$aI:(DE-Juel1)IMD-2-20101013