001     878030
005     20240708132714.0
024 7 _ |a 10.1039/D0TA02319A
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a 2128/25654
|2 Handle
024 7 _ |a WOS:000548452100041
|2 WOS
037 _ _ |a FZJ-2020-02586
082 _ _ |a 530
100 1 _ |a Kuo, Liang-Yin
|0 P:(DE-Juel1)178838
|b 0
|u fzj
245 _ _ |a On the origin of non-monotonic variation of the lattice parameters of LiNi 1/3 Co 1/3 Mn 1/3 O 2 with lithiation/delithiation: a first-principles study
260 _ _ |a London
|c 2020
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615814409_29418
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Here, we show that the non-monotonic variation of lattice parameters of LixNi1/3Co1/3Mn1/3O2 during delithiation/lithiation can be predicted in good agreement with experimental results by applying an approach combining an extensive set of Coulomb energy and density functional theory calculations. Moreover, the influence of choosing an exchange-correlation functional on our results is discussed. By analyzing the local spin polarization, spin density plot, density of states, and Bader charges, the reason behind this behavior is explained. It is found that the presence/absence of electrostatic Li–O interactions and Jahn–Teller distortion and oxidation of O anions are key parameters to control the lattice parameter changes. In particular, the contraction of c for 0.5 > x, which has not been fully explained so far, is found to be due to the vanishing of the Jahn–Teller distortion in NiO6 octahedra. The O3 → O1 phase transition for low concentrations of Li, which has also not been justified until now, is shown to be driven by strengthening of ionic bonds and electrostatic interaction in the latter phase.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |a Simulation-guided Development of Cathode Materials (jiek12_20190501)
|0 G:(DE-Juel1)jiek12_20190501
|c jiek12_20190501
|f Simulation-guided Development of Cathode Materials
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 1
|u fzj
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 2
|e Corresponding author
773 _ _ |a 10.1039/D0TA02319A
|g Vol. 8, no. 27, p. 13832 - 13841
|0 PERI:(DE-600)2702232-8
|n 27
|p 13832 - 13841
|t Journal of materials chemistry / A Materials for energy and sustainability
|v 8
|y 2020
|x 2050-7496
856 4 _ |u https://juser.fz-juelich.de/record/878030/files/JMCA.pdf
|y Published on 2020-06-04. Available in OpenAccess from 2021-06-04.
856 4 _ |u https://juser.fz-juelich.de/record/878030/files/JMCA.pdf?subformat=pdfa
|x pdfa
|y Published on 2020-06-04. Available in OpenAccess from 2021-06-04.
909 C O |o oai:juser.fz-juelich.de:878030
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178838
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)174502
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-02-28
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-28
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J MATER CHEM A : 2018
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-28
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2020-02-28
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2018
|d 2020-02-28
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-02-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21