000878031 001__ 878031
000878031 005__ 20240708132714.0
000878031 0247_ $$2doi$$a10.1016/j.jpowsour.2019.227605
000878031 0247_ $$2ISSN$$a0378-7753
000878031 0247_ $$2ISSN$$a1873-2755
000878031 0247_ $$2Handle$$a2128/25655
000878031 0247_ $$2WOS$$aWOS:000517663800102
000878031 037__ $$aFZJ-2020-02587
000878031 082__ $$a620
000878031 1001_ $$0P:(DE-HGF)0$$aBakavets, Aliaksei$$b0
000878031 245__ $$aPulse electrodeposited bismuth-tellurium superlattices with controllable bismuth content
000878031 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020
000878031 3367_ $$2DRIVER$$aarticle
000878031 3367_ $$2DataCite$$aOutput Types/Journal article
000878031 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599829279_2809
000878031 3367_ $$2BibTeX$$aARTICLE
000878031 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878031 3367_ $$00$$2EndNote$$aJournal Article
000878031 520__ $$aSuperlattice structures of (Bi2)m(Bi2Te3)n series with controllable Bi mole fraction from 0.41 to 0.71 are electrodeposited in pulse potentiostatic mode from acidic electrolytes containing Bi(NO3)3 and TeO2 as precursors. Two valence states of bismuth in superlattices are identified by X-ray photoelectron spectroscopy (XPS). One of those states is attributed to interlayered Bi0 which is present in (Bi2)m(Bi2Te3)n superlattice in the form of biatomic layers between bismuth telluride quintuples. X-ray difraction (XRD) analysis and density functional theory (DFT) calculations indicate an increase in subcell parameter asub and decrease in subcell parameter csub with the increase of Bi mole fraction. Biatomic layers of Bi0 are identified with cyclic voltammetry by characteristic anodic peak between potentials of metallic bismuth and Bi2Te3 oxidation. The selective oxidation of Bi-bilayers in (Bi2)m(Bi2Te3)n superlattice at the potential of the anodic peak results in the product corresponding to Bi2Te3 by stoichiometry, but having an expanded crystal structure. Superlattices with controllable Bi mole fraction and Bi2Te3 with “memory effect” may be of interest for design of new thermoelectric materials with controllable parameters.
000878031 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000878031 588__ $$aDataset connected to CrossRef
000878031 7001_ $$0P:(DE-HGF)0$$aAniskevich, Yauhen$$b1
000878031 7001_ $$0P:(DE-HGF)0$$aYakimenko, Oleg$$b2
000878031 7001_ $$0P:(DE-HGF)0$$aJo, Jae Hyeon$$b3
000878031 7001_ $$0P:(DE-HGF)0$$aVernickaite, Edita$$b4
000878031 7001_ $$0P:(DE-HGF)0$$aTsyntsaru, Natalia$$b5
000878031 7001_ $$0P:(DE-HGF)0$$aCesiulis, Henrikas$$b6
000878031 7001_ $$0P:(DE-Juel1)178838$$aKuo, Liang-Yin$$b7$$ufzj
000878031 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b8$$ufzj
000878031 7001_ $$0P:(DE-HGF)0$$aRagoisha, Genady$$b9
000878031 7001_ $$0P:(DE-HGF)0$$aMyung, Seung-Taek$$b10$$eCorresponding author
000878031 7001_ $$0P:(DE-HGF)0$$aStreltsov, Eugene$$b11$$eCorresponding author
000878031 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2019.227605$$gVol. 450, p. 227605 -$$p227605 -$$tJournal of power sources$$v450$$x0378-7753$$y2020
000878031 8564_ $$uhttps://juser.fz-juelich.de/record/878031/files/J.Power%20Sources.pdf$$yPublished on 2019-12-19. Available in OpenAccess from 2021-12-19.
000878031 8564_ $$uhttps://juser.fz-juelich.de/record/878031/files/J.Power%20Sources.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-12-19. Available in OpenAccess from 2021-12-19.
000878031 909CO $$ooai:juser.fz-juelich.de:878031$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178838$$aForschungszentrum Jülich$$b7$$kFZJ
000878031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b8$$kFZJ
000878031 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000878031 9141_ $$y2020
000878031 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-03
000878031 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-03
000878031 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-03
000878031 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-03
000878031 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000878031 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878031 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-03
000878031 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2018$$d2020-01-03
000878031 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-03
000878031 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-03
000878031 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-03
000878031 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-03
000878031 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2018$$d2020-01-03
000878031 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-03
000878031 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-03
000878031 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-03
000878031 920__ $$lyes
000878031 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000878031 9801_ $$aFullTexts
000878031 980__ $$ajournal
000878031 980__ $$aVDB
000878031 980__ $$aUNRESTRICTED
000878031 980__ $$aI:(DE-Juel1)IEK-1-20101013
000878031 981__ $$aI:(DE-Juel1)IMD-2-20101013