001     878031
005     20240708132714.0
024 7 _ |a 10.1016/j.jpowsour.2019.227605
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a 2128/25655
|2 Handle
024 7 _ |a WOS:000517663800102
|2 WOS
037 _ _ |a FZJ-2020-02587
082 _ _ |a 620
100 1 _ |a Bakavets, Aliaksei
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Pulse electrodeposited bismuth-tellurium superlattices with controllable bismuth content
260 _ _ |a New York, NY [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599829279_2809
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Superlattice structures of (Bi2)m(Bi2Te3)n series with controllable Bi mole fraction from 0.41 to 0.71 are electrodeposited in pulse potentiostatic mode from acidic electrolytes containing Bi(NO3)3 and TeO2 as precursors. Two valence states of bismuth in superlattices are identified by X-ray photoelectron spectroscopy (XPS). One of those states is attributed to interlayered Bi0 which is present in (Bi2)m(Bi2Te3)n superlattice in the form of biatomic layers between bismuth telluride quintuples. X-ray difraction (XRD) analysis and density functional theory (DFT) calculations indicate an increase in subcell parameter asub and decrease in subcell parameter csub with the increase of Bi mole fraction. Biatomic layers of Bi0 are identified with cyclic voltammetry by characteristic anodic peak between potentials of metallic bismuth and Bi2Te3 oxidation. The selective oxidation of Bi-bilayers in (Bi2)m(Bi2Te3)n superlattice at the potential of the anodic peak results in the product corresponding to Bi2Te3 by stoichiometry, but having an expanded crystal structure. Superlattices with controllable Bi mole fraction and Bi2Te3 with “memory effect” may be of interest for design of new thermoelectric materials with controllable parameters.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Aniskevich, Yauhen
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Yakimenko, Oleg
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jo, Jae Hyeon
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Vernickaite, Edita
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Tsyntsaru, Natalia
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Cesiulis, Henrikas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kuo, Liang-Yin
|0 P:(DE-Juel1)178838
|b 7
|u fzj
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 8
|u fzj
700 1 _ |a Ragoisha, Genady
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Myung, Seung-Taek
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
700 1 _ |a Streltsov, Eugene
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.1016/j.jpowsour.2019.227605
|g Vol. 450, p. 227605 -
|0 PERI:(DE-600)1491915-1
|p 227605 -
|t Journal of power sources
|v 450
|y 2020
|x 0378-7753
856 4 _ |y Published on 2019-12-19. Available in OpenAccess from 2021-12-19.
|u https://juser.fz-juelich.de/record/878031/files/J.Power%20Sources.pdf
856 4 _ |y Published on 2019-12-19. Available in OpenAccess from 2021-12-19.
|x pdfa
|u https://juser.fz-juelich.de/record/878031/files/J.Power%20Sources.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878031
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)178838
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)174502
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-03
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-03
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2018
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-03
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2018
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21