001     878033
005     20240708132714.0
024 7 _ |a 10.1039/C9EE01903K
|2 doi
024 7 _ |a 1754-5692
|2 ISSN
024 7 _ |a 1754-5706
|2 ISSN
024 7 _ |a 2128/25595
|2 Handle
024 7 _ |a altmetric:73424853
|2 altmetric
024 7 _ |a WOS:000508857600007
|2 WOS
037 _ _ |a FZJ-2020-02589
082 _ _ |a 690
100 1 _ |a Huo, Hanyu
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries
260 _ _ |a Cambridge
|c 2020
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599574364_32472
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solid-state batteries (SSBs) with metallic lithium (Li) anodes and nonflammable solid-state electrolytes (SSEs) are viewed as the next-generation batteries because of their potential improvement in energy density and guarantee of safety. However, even though the high-density solid garnet SSE pellets exhibit high ionic conductivity, high transference number, and large shear modulus, the unexpectedly serious occurrence of dendrite propagation remains a problem. Herein, a mixed conductive layer (MCL) consisting of electron-conductive nanoparticles embedded in an ion-conductive network is introduced at the interface between the garnet SSE and the Li anode. Such MCL not only leads to the transition from lithiophobicity to lithiophilicity, but also homogenizes the electric-field distribution inside the MCL and relieves the electronic attacks to the garnet. As a result, the Li/MCL/garnet/MCL/Li cells show a critical current density as high as 1.2 mA cm−2 and stable cycling for over 1000 h at 0.1 mA cm−2. The LiCoO2/Li cells with the MCL-protected interface show excellent cycling and rate performance at room temperature. These results demonstrate a rational design for a stable garnet/Li interface and an effective strategy to enable Li metal anodes in SSBs.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Chen, Yue
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Li, Ruying
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhao, Ning
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Luo, Jing
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Pereira da Silva, João Gustavo
|0 P:(DE-Juel1)171464
|b 5
|u fzj
700 1 _ |a Mücke, Robert
|0 P:(DE-Juel1)129641
|b 6
|u fzj
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 7
700 1 _ |a Guo, Xiangxin
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
700 1 _ |a Sun, Xueliang
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
773 _ _ |a 10.1039/C9EE01903K
|g Vol. 13, no. 1, p. 127 - 134
|0 PERI:(DE-600)2439879-2
|n 1
|p 127 - 134
|t Energy & environmental science
|v 13
|y 2020
|x 1754-5706
856 4 _ |y Published on 2019-11-27. Available in OpenAccess from 2020-11-27.
|u https://juser.fz-juelich.de/record/878033/files/EES.pdf
856 4 _ |y Published on 2019-11-27. Available in OpenAccess from 2020-11-27.
|x pdfa
|u https://juser.fz-juelich.de/record/878033/files/EES.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878033
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)171464
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129641
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)174502
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-02-27
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-02-27
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b ENERG ENVIRON SCI : 2018
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-27
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERG ENVIRON SCI : 2018
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21