000878034 001__ 878034
000878034 005__ 20240708132714.0
000878034 0247_ $$2doi$$a10.1016/j.mattod.2020.01.019
000878034 0247_ $$2ISSN$$a1369-7021
000878034 0247_ $$2ISSN$$a1873-4103
000878034 0247_ $$2Handle$$a2128/26219
000878034 0247_ $$2altmetric$$aaltmetric:78284853
000878034 0247_ $$2WOS$$aWOS:000540750100022
000878034 037__ $$aFZJ-2020-02590
000878034 082__ $$a670
000878034 1001_ $$0P:(DE-HGF)0$$aRyu, Hoon-Hee$$b0
000878034 245__ $$aA highly stabilized Ni-rich NCA cathode for high-energy lithium-ion batteries
000878034 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000878034 3367_ $$2DRIVER$$aarticle
000878034 3367_ $$2DataCite$$aOutput Types/Journal article
000878034 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605789857_29122
000878034 3367_ $$2BibTeX$$aARTICLE
000878034 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878034 3367_ $$00$$2EndNote$$aJournal Article
000878034 520__ $$aIn this study, we have demonstrated that boron doping of Ni-rich Li[NixCoyAl1−x−y]O2 dramatically alters the microstructure of the material. Li[Ni0.885Co0.1Al0.015]O2 is composed of large equiaxed primary particles, whereas a boron-doped Li[Ni0.878Co0.097Al0.015B0.01]O2 cathode consists of elongated particles that are highly oriented to produce a strong, crystallographic texture. Boron reduces the surface energy of the (0 0 3) planes, resulting in a preferential growth mode that maximizes the (0 0 3) facet. This microstructure modification greatly improves the cycling stability; the Li[Ni0.878Co0.097Al0.015B0.01]O2 cathode maintains a remarkable 83% of the initial capacity after 1000 cycles even when it is cycled at 100% depth of discharge. By contrast, the Li[Ni0.885Co0.1Al0.015]O2 cathode retains only 49% of its initial capacity. The superior cycling stability clearly indicates the importance of the particle microstructure (i.e., particle size, particle shape, and crystallographic orientation) in mitigating the abrupt internal strain caused by phase transitions in the deeply charged state, which occurs in all Ni-rich layered cathodes. Microstructure engineering by surface energy modification, when combined with protective coatings and composition modification, may provide a long-sought method of harnessing the high capacity of Ni-rich layered cathodes without sacrificing the cycling stability.
000878034 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000878034 588__ $$aDataset connected to CrossRef
000878034 7001_ $$0P:(DE-HGF)0$$aPark, Nam-Yung$$b1
000878034 7001_ $$0P:(DE-HGF)0$$aSeo, Jeong Hyun$$b2
000878034 7001_ $$0P:(DE-HGF)0$$aYu, Young-Sang$$b3
000878034 7001_ $$0P:(DE-HGF)0$$aSharma, Monika$$b4
000878034 7001_ $$0P:(DE-Juel1)129641$$aMücke, Robert$$b5$$ufzj
000878034 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b6$$eCorresponding author$$ufzj
000878034 7001_ $$0P:(DE-HGF)0$$aYoon, Chong S.$$b7$$eCorresponding author
000878034 7001_ $$0P:(DE-HGF)0$$aSun, Yang-Kook$$b8$$eCorresponding author
000878034 773__ $$0PERI:(DE-600)2083513-9$$a10.1016/j.mattod.2020.01.019$$gVol. 36, p. 73 - 82$$p73 - 82$$tMaterials today$$v36$$x1369-7021$$y2020
000878034 8564_ $$uhttps://juser.fz-juelich.de/record/878034/files/preprint.pdf$$yPublished on 2020-02-22. Available in OpenAccess from 2022-02-22.
000878034 8564_ $$uhttps://juser.fz-juelich.de/record/878034/files/preprint.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-02-22. Available in OpenAccess from 2022-02-22.
000878034 909CO $$ooai:juser.fz-juelich.de:878034$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129641$$aForschungszentrum Jülich$$b5$$kFZJ
000878034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b6$$kFZJ
000878034 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000878034 9141_ $$y2020
000878034 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000878034 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000878034 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-12
000878034 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000878034 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bMATER TODAY : 2018$$d2020-01-12
000878034 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-12
000878034 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000878034 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000878034 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878034 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-12
000878034 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER TODAY : 2018$$d2020-01-12
000878034 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000878034 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000878034 920__ $$lyes
000878034 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000878034 9801_ $$aFullTexts
000878034 980__ $$ajournal
000878034 980__ $$aVDB
000878034 980__ $$aUNRESTRICTED
000878034 980__ $$aI:(DE-Juel1)IEK-1-20101013
000878034 981__ $$aI:(DE-Juel1)IMD-2-20101013