001     878034
005     20240708132714.0
024 7 _ |a 10.1016/j.mattod.2020.01.019
|2 doi
024 7 _ |a 1369-7021
|2 ISSN
024 7 _ |a 1873-4103
|2 ISSN
024 7 _ |a 2128/26219
|2 Handle
024 7 _ |a altmetric:78284853
|2 altmetric
024 7 _ |a WOS:000540750100022
|2 WOS
037 _ _ |a FZJ-2020-02590
082 _ _ |a 670
100 1 _ |a Ryu, Hoon-Hee
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A highly stabilized Ni-rich NCA cathode for high-energy lithium-ion batteries
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605789857_29122
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this study, we have demonstrated that boron doping of Ni-rich Li[NixCoyAl1−x−y]O2 dramatically alters the microstructure of the material. Li[Ni0.885Co0.1Al0.015]O2 is composed of large equiaxed primary particles, whereas a boron-doped Li[Ni0.878Co0.097Al0.015B0.01]O2 cathode consists of elongated particles that are highly oriented to produce a strong, crystallographic texture. Boron reduces the surface energy of the (0 0 3) planes, resulting in a preferential growth mode that maximizes the (0 0 3) facet. This microstructure modification greatly improves the cycling stability; the Li[Ni0.878Co0.097Al0.015B0.01]O2 cathode maintains a remarkable 83% of the initial capacity after 1000 cycles even when it is cycled at 100% depth of discharge. By contrast, the Li[Ni0.885Co0.1Al0.015]O2 cathode retains only 49% of its initial capacity. The superior cycling stability clearly indicates the importance of the particle microstructure (i.e., particle size, particle shape, and crystallographic orientation) in mitigating the abrupt internal strain caused by phase transitions in the deeply charged state, which occurs in all Ni-rich layered cathodes. Microstructure engineering by surface energy modification, when combined with protective coatings and composition modification, may provide a long-sought method of harnessing the high capacity of Ni-rich layered cathodes without sacrificing the cycling stability.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Park, Nam-Yung
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Seo, Jeong Hyun
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Yu, Young-Sang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sharma, Monika
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mücke, Robert
|0 P:(DE-Juel1)129641
|b 5
|u fzj
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 6
|e Corresponding author
|u fzj
700 1 _ |a Yoon, Chong S.
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
700 1 _ |a Sun, Yang-Kook
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1016/j.mattod.2020.01.019
|g Vol. 36, p. 73 - 82
|0 PERI:(DE-600)2083513-9
|p 73 - 82
|t Materials today
|v 36
|y 2020
|x 1369-7021
856 4 _ |y Published on 2020-02-22. Available in OpenAccess from 2022-02-22.
|u https://juser.fz-juelich.de/record/878034/files/preprint.pdf
856 4 _ |y Published on 2020-02-22. Available in OpenAccess from 2022-02-22.
|x pdfa
|u https://juser.fz-juelich.de/record/878034/files/preprint.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878034
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129641
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)174502
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-12
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b MATER TODAY : 2018
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-12
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MATER TODAY : 2018
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21