000878040 001__ 878040
000878040 005__ 20210130005335.0
000878040 0247_ $$2doi$$a10.1186/s13550-020-00642-0
000878040 0247_ $$2Handle$$a2128/25320
000878040 0247_ $$2altmetric$$aaltmetric:82847038
000878040 0247_ $$2pmid$$apmid:32451793
000878040 0247_ $$2WOS$$aWOS:000535370300001
000878040 037__ $$aFZJ-2020-02596
000878040 082__ $$a610
000878040 1001_ $$0P:(DE-Juel1)165631$$aOliveira, Dennis$$b0$$ufzj
000878040 245__ $$aHigh uptake of 68Ga-PSMA and 18F-DCFPyL in the peritumoral area of rat gliomas due to activated astrocytes
000878040 260__ $$aHeidelberg$$bSpringer$$c2020
000878040 3367_ $$2DRIVER$$aarticle
000878040 3367_ $$2DataCite$$aOutput Types/Journal article
000878040 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1595249736_12756
000878040 3367_ $$2BibTeX$$aARTICLE
000878040 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878040 3367_ $$00$$2EndNote$$aJournal Article
000878040 520__ $$aBackgroundRecent studies reported on high uptake of the PSMA ligands [68Ga]HBED-CC (68Ga-PSMA) and 18F-DCFPyL in cerebral gliomas. This study explores the regional uptake and cellular targets of 68Ga-PSMA and 18F-DCFPyL in three different rat glioma models.MethodsF98, 9 L, or U87 rat gliomas were implanted into the brains of 38 rats. After 13 days of tumor growth, 68Ga-PSMA (n = 21) or 18F-DCFPyL (n = 17) was injected intravenously, and animals were sacrificed 40 min later. Five animals for each tracer and tumor model were additionally investigated by micro-PET at 20–40 min post injection. Cryosections of the tumor bearing brains were analyzed by ex vivo autoradiography and immunofluorescence staining for blood vessels, microglia, astrocytes, and presence of PSMA. Blood-brain barrier (BBB) permeability was tested by coinjection of Evans blue dye (EBD). 68Ga-PSMA uptake after restoration of BBB integrity by treatment with dexamethasone (Dex) was evaluated in four animals with U87 gliomas. Competition experiments using the PSMA-receptor inhibitor 2-(phosphonomethyl)pentane-1,5-dioic acid (PMPA) were performed for both tracers in two animals each.ResultsAutoradiography demonstrated a strong 68Ga-PSMA and 18F-DCFPyL binding in the peritumoral area and moderate binding in the center of the tumors. PMPA administration led to complete inhibition of 68Ga-PSMA and 18F-DCFPyL binding in the peritumoral region. Restoration of BBB by Dex treatment reduced EBD extravasation but 68Ga-PSMA binding remained unchanged. Expression of activated microglia (CD11b) was low in the intra- and peritumoral area but GFAP staining revealed strong activation of astrocytes in congruency to the tracer binding in the peritumoral area. All tumors were visualized in micro PET, showing a lower tumor/brain contrast with 68Ga-PSMA than with 18F-DCFPyL.ConclusionsHigh uptake of 68Ga-PSMA and 18F-DCFPyL in the peritumoral area of all glioma models is presumably caused by activated astrocytes. This may represent a limitation for the clinical application of PSMA ligands in gliomas.
000878040 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000878040 588__ $$aDataset connected to CrossRef
000878040 7001_ $$0P:(DE-Juel1)156479$$aStegmayr, Carina$$b1$$ufzj
000878040 7001_ $$0P:(DE-Juel1)132315$$aHeinzel, Alexander$$b2$$ufzj
000878040 7001_ $$0P:(DE-Juel1)131818$$aErmert, Johannes$$b3$$ufzj
000878040 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b4$$ufzj
000878040 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b5$$ufzj
000878040 7001_ $$0P:(DE-Juel1)132318$$aMottaghy, Felix M.$$b6$$ufzj
000878040 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b7$$eCorresponding author
000878040 7001_ $$0P:(DE-Juel1)144347$$aWilluweit, Antje$$b8$$ufzj
000878040 773__ $$0PERI:(DE-600)2619892-7$$a10.1186/s13550-020-00642-0$$gVol. 10, no. 1, p. 55$$n1$$p55$$tEJNMMI Research$$v10$$x2191-219X$$y2020
000878040 8564_ $$uhttps://juser.fz-juelich.de/record/878040/files/s13550-020-00642-0.pdf$$yOpenAccess
000878040 8564_ $$uhttps://juser.fz-juelich.de/record/878040/files/s13550-020-00642-0.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878040 909CO $$ooai:juser.fz-juelich.de:878040$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165631$$aForschungszentrum Jülich$$b0$$kFZJ
000878040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156479$$aForschungszentrum Jülich$$b1$$kFZJ
000878040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132315$$aForschungszentrum Jülich$$b2$$kFZJ
000878040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131818$$aForschungszentrum Jülich$$b3$$kFZJ
000878040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b4$$kFZJ
000878040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b5$$kFZJ
000878040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132318$$aForschungszentrum Jülich$$b6$$kFZJ
000878040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b7$$kFZJ
000878040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144347$$aForschungszentrum Jülich$$b8$$kFZJ
000878040 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000878040 9141_ $$y2020
000878040 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000878040 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000878040 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000878040 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878040 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-14
000878040 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEJNMMI RES : 2018$$d2020-01-14
000878040 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-14
000878040 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-14
000878040 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-01-14
000878040 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-14
000878040 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000878040 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-14
000878040 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878040 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-14
000878040 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-14
000878040 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-14
000878040 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-14
000878040 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000878040 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000878040 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000878040 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000878040 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x3
000878040 980__ $$ajournal
000878040 980__ $$aVDB
000878040 980__ $$aUNRESTRICTED
000878040 980__ $$aI:(DE-Juel1)INM-4-20090406
000878040 980__ $$aI:(DE-Juel1)INM-11-20170113
000878040 980__ $$aI:(DE-82)080010_20140620
000878040 980__ $$aI:(DE-Juel1)INM-5-20090406
000878040 9801_ $$aFullTexts