000878045 001__ 878045
000878045 005__ 20221126155024.0
000878045 0247_ $$2doi$$a10.1103/PhysRevResearch.2.033068
000878045 0247_ $$2Handle$$a2128/25321
000878045 0247_ $$2altmetric$$aaltmetric:85848124
000878045 0247_ $$2WOS$$aWOS:000604139600006
000878045 037__ $$aFZJ-2020-02601
000878045 082__ $$a530
000878045 1001_ $$00000-0001-5564-6800$$aHille, Cornelia$$b0$$eCorresponding author
000878045 245__ $$aPseudogap opening in the two-dimensional Hubbard model: A functional renormalization group analysis
000878045 260__ $$aCollege Park, MD$$bAPS$$c2020
000878045 3367_ $$2DRIVER$$aarticle
000878045 3367_ $$2DataCite$$aOutput Types/Journal article
000878045 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669388417_20907
000878045 3367_ $$2BibTeX$$aARTICLE
000878045 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878045 3367_ $$00$$2EndNote$$aJournal Article
000878045 520__ $$aUsing the recently introduced multiloop extension of the functional renormalization group, we compute the frequency- and momentum-dependent self-energy of the two-dimensional Hubbard model at half filling and weak coupling. We show that, in the truncated-unity approach for the vertex, it is essential to adopt the Schwinger-Dyson form of the self-energy flow equation in order to capture the pseudogap opening. We provide an analytic understanding of the key role played by the flow scheme in correctly accounting for the impact of the antiferromagnetic fluctuations. For the resulting pseudogap, we present a detailed numerical analysis of its evolution with temperature, interaction strength, and loop order.
000878045 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000878045 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x1
000878045 588__ $$aDataset connected to CrossRef
000878045 7001_ $$0P:(DE-Juel1)133032$$aRohe, Daniel$$b1$$ufzj
000878045 7001_ $$0P:(DE-HGF)0$$aHonerkamp, Carsten$$b2
000878045 7001_ $$00000-0002-3128-6350$$aAndergassen, Sabine$$b3
000878045 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.2.033068$$gVol. 2, no. 3, p. 033068$$n3$$p033068$$tPhysical review research$$v2$$x2643-1564$$y2020
000878045 8564_ $$uhttps://juser.fz-juelich.de/record/878045/files/PhysRevResearch.2.033068.pdf$$yOpenAccess
000878045 8564_ $$uhttps://juser.fz-juelich.de/record/878045/files/PhysRevResearch.2.033068.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878045 909CO $$ooai:juser.fz-juelich.de:878045$$popen_access$$popenaire$$pdnbdelivery$$pdriver$$pVDB
000878045 9101_ $$0I:(DE-HGF)0$$60000-0001-5564-6800$$aExternal Institute$$b0$$kExtern
000878045 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133032$$aForschungszentrum Jülich$$b1$$kFZJ
000878045 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000878045 9101_ $$0I:(DE-HGF)0$$60000-0002-3128-6350$$aExternal Institute$$b3$$kExtern
000878045 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000878045 9141_ $$y2020
000878045 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878045 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878045 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000878045 980__ $$ajournal
000878045 980__ $$aVDB
000878045 980__ $$aI:(DE-Juel1)JSC-20090406
000878045 980__ $$aUNRESTRICTED
000878045 9801_ $$aFullTexts