001     878045
005     20221126155024.0
024 7 _ |a 10.1103/PhysRevResearch.2.033068
|2 doi
024 7 _ |a 2128/25321
|2 Handle
024 7 _ |a altmetric:85848124
|2 altmetric
024 7 _ |a WOS:000604139600006
|2 WOS
037 _ _ |a FZJ-2020-02601
082 _ _ |a 530
100 1 _ |a Hille, Cornelia
|0 0000-0001-5564-6800
|b 0
|e Corresponding author
245 _ _ |a Pseudogap opening in the two-dimensional Hubbard model: A functional renormalization group analysis
260 _ _ |a College Park, MD
|c 2020
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1669388417_20907
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Using the recently introduced multiloop extension of the functional renormalization group, we compute the frequency- and momentum-dependent self-energy of the two-dimensional Hubbard model at half filling and weak coupling. We show that, in the truncated-unity approach for the vertex, it is essential to adopt the Schwinger-Dyson form of the self-energy flow equation in order to capture the pseudogap opening. We provide an analytic understanding of the key role played by the flow scheme in correctly accounting for the impact of the antiferromagnetic fluctuations. For the resulting pseudogap, we present a detailed numerical analysis of its evolution with temperature, interaction strength, and loop order.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a Simulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)
|0 G:(DE-Juel1)SDLQM
|c SDLQM
|f Simulation and Data Laboratory Quantum Materials (SDLQM)
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rohe, Daniel
|0 P:(DE-Juel1)133032
|b 1
|u fzj
700 1 _ |a Honerkamp, Carsten
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Andergassen, Sabine
|0 0000-0002-3128-6350
|b 3
773 _ _ |a 10.1103/PhysRevResearch.2.033068
|g Vol. 2, no. 3, p. 033068
|0 PERI:(DE-600)3004165-X
|n 3
|p 033068
|t Physical review research
|v 2
|y 2020
|x 2643-1564
856 4 _ |u https://juser.fz-juelich.de/record/878045/files/PhysRevResearch.2.033068.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/878045/files/PhysRevResearch.2.033068.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:878045
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0001-5564-6800
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133032
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0002-3128-6350
913 1 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21