Hauptseite > Publikationsdatenbank > Pseudogap opening in the two-dimensional Hubbard model: A functional renormalization group analysis > print |
001 | 878045 | ||
005 | 20221126155024.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevResearch.2.033068 |2 doi |
024 | 7 | _ | |a 2128/25321 |2 Handle |
024 | 7 | _ | |a altmetric:85848124 |2 altmetric |
024 | 7 | _ | |a WOS:000604139600006 |2 WOS |
037 | _ | _ | |a FZJ-2020-02601 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Hille, Cornelia |0 0000-0001-5564-6800 |b 0 |e Corresponding author |
245 | _ | _ | |a Pseudogap opening in the two-dimensional Hubbard model: A functional renormalization group analysis |
260 | _ | _ | |a College Park, MD |c 2020 |b APS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1669388417_20907 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Using the recently introduced multiloop extension of the functional renormalization group, we compute the frequency- and momentum-dependent self-energy of the two-dimensional Hubbard model at half filling and weak coupling. We show that, in the truncated-unity approach for the vertex, it is essential to adopt the Schwinger-Dyson form of the self-energy flow equation in order to capture the pseudogap opening. We provide an analytic understanding of the key role played by the flow scheme in correctly accounting for the impact of the antiferromagnetic fluctuations. For the resulting pseudogap, we present a detailed numerical analysis of its evolution with temperature, interaction strength, and loop order. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
536 | _ | _ | |a Simulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM) |0 G:(DE-Juel1)SDLQM |c SDLQM |f Simulation and Data Laboratory Quantum Materials (SDLQM) |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Rohe, Daniel |0 P:(DE-Juel1)133032 |b 1 |u fzj |
700 | 1 | _ | |a Honerkamp, Carsten |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Andergassen, Sabine |0 0000-0002-3128-6350 |b 3 |
773 | _ | _ | |a 10.1103/PhysRevResearch.2.033068 |g Vol. 2, no. 3, p. 033068 |0 PERI:(DE-600)3004165-X |n 3 |p 033068 |t Physical review research |v 2 |y 2020 |x 2643-1564 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878045/files/PhysRevResearch.2.033068.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878045/files/PhysRevResearch.2.033068.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:878045 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 0000-0001-5564-6800 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)133032 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 0000-0002-3128-6350 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Computational Science and Mathematical Methods |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|