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Pseudogap opening in the two-dimensional Hubbard model:
A functional renormalization group analysis
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Using the recently introduced multiloop extension of the functional renormalization group, we compute
the frequency- and momentum-dependent self-energy of the two-dimensional Hubbard model at half filling
and weak coupling. We show that, in the truncated-unity approach for the vertex, it is essential to adopt the
Schwinger-Dyson form of the self-energy flow equation in order to capture the pseudogap opening. We provide
an analytic understanding of the key role played by the flow scheme in correctly accounting for the impact of
the antiferromagnetic fluctuations. For the resulting pseudogap, we present a detailed numerical analysis of its
evolution with temperature, interaction strength, and loop order.

DOI: 10.1103/PhysRevResearch.2.033068

I. INTRODUCTION

In correlated electrons physics, the term pseudogap is usu-
ally associated with a gaplike suppression of the low-energy
spectral weight that occurs without a direct connection to a
phase transition. While in typical one-dimensional conductors
the pseudogap can be understood as a precursor of density-
wave or Peierls ordering [1-3], in other two-dimensional
(2D) systems, in particular, in hole-doped cuprates, the mech-
anism of the pseudogap and its connection to symmetry-
breaking transitions are less clear. The associated momentum
anisotropy in the spectral function of the cuprates, with a
pronounced quasiparticle gap at the antinodal point, has been
observed in numerous experiments (see, e.g., [4,5]). Theoret-
ically, the pseudogap has been identified in the hole-doped
2D Hubbard model with a small next-nearest-neighbor hop-
ping amplitude ¢’ and strong coupling [6—16]. A momentum-
selective gap opening has been observed also at electron dop-
ing, for weak to intermediate interaction strengths [7,10,17—
22]. In contrast to the pseudogap originating from strong-
coupling effects, the weak-coupling mechanism is induced by
long-range antiferromagnetic (AF) correlations [7,17-20,22—
25]. For this reason also the half-filled Hubbard model with-
out next-nearest-neighbor hopping has been considered, with
the two-particle self-consistent approach [22], the dynamical
cluster approximation [21], the dynamical vertex approxima-
tion [25], and recently also with the parquet approximation
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[26] and self-energy diagrammatic determinant Monte Carlo
[27] (mostly at weak to intermediate coupling).

To capture pseudogap effects in functional renormalization
group (fRG) calculations at weak to intermediate coupling,
a proper resolution of the sharp AF peak in the magnetic
vertex is essential and requires a fine transfer momentum
grid. This can be implemented very efficiently within the
advanced variants of the fRG, like the recently described
truncated-unity fRG (TUfRG) [28-30], where the bosonic
transfer momentum dependence can be suitably adapted,
while the fermionic momentum dependences are sufficiently
parametrized by fewer form factors. We present here the
observation of pseudogap physics within the TUfRG. Our rea-
soning leading to this finding also sheds lights on an apparent
mystery around two previous advanced fRG studies [31,32].
In the first fRG work [31], including the full frequency de-
pendence of the two-particle vertex together with a truncation
to s-wave form factors, the authors did not report a strong
momentum dependence in the quasiparticle weight. On the
other hand, in the second publication [32], using an a posteri-
ori evaluation of the self-energy with the Schwinger-Dyson
equation [33,34] (SDE), a gap at the antinodal point was
observed.

In previous N-patch momentum discretizations, a pseudo-
gap was detected in the quasiparticle peak computed from
two-loop contributions to the self-energy. These were ob-
tained either by using the Wick-ordered fRG [35] or by
inserting the integrated one-loop equation for the vertex into
the flow equation for the self-energy [36], avoiding in this way
an explicit computation of a frequency-dependent two-particle
vertex. Other momentum-resolved quantities obtained in the
N-patch fRG were also indicative of a partial loss of the Fermi
surface [37,38]. We note that only more recent studies [31,39]
include the frequency dependence of the vertex, finding
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however no momentum-dependent gap [31,39,40]. Mostly,
models including a finite next-nearest-neighbor hopping ¢’
have been considered. For those, a gap opening has been
observed at hole doping, not too far from Van Hove filling,
at the hot spots where the Fermi surface crosses the magnetic
Brillouin zone [35,37]. Non-Fermi-liquid behavior of the self-
energy has been observed close to the pseudocritical tempera-
ture and in the immediate vicinity of the hot spots. Without
next-nearest-neighbor hopping, the quasiparticle weight at
T = 0 appears to be strongly renormalized at the antinodal
point, and less at the nodal one [41], with no pronounced
gap-opening tendencies. '

In this work we use an algorithmic implementation of
the fRG [29], which, with respect to previous fRG-based
computation schemes, includes also an accurate treatment
of the frequency dependence of the two-particle vertex. We
provide a reasoning for the lack of pseudogap physics in
previous conventional one-loop (1£) flows of the self-energy
and demonstrate that its replacement by the derivative of
the SDE yields the expected gap opening.” More precisely,
the pseudogap is defined as the change of the self-energy
frequency dependence from Fermi-liquid-like to insulatorlike
at temperatures above which (or interaction strengths below
which) the fRG flow signals an apparent AF ordering, which
we refer to as pseudocriticality. The term “pseudo” indicates
that finite-7" magnetic ordering should not occur in these 2D
models. Recent work using the related parquet approximation
[26] suggests that the fRG may indeed be capable of cap-
turing this Mermin-Wagner physics. On the technical level,
consistent with the recently introduced multiloop extension
of the fRG [44,45], the flow equation for the self-energy
has to be adapted [30] according to the SDE in the TUfRG.
In fact, it is known that the SDE takes into account spin
excitations explicitly, including the second-order self-energy
corrections for an effective model in which the high-energy
spin fluctuations are integrated out [20,22,46,47]. By using the
Ornstein-Zernike form for the spin susceptibility [48,49], the
SDE predicts a spectral gap for momenta close to the hot spots
[20,22]. Our modified TUfRG scheme captures this physics
truthfully and is hence capable of resolving the pseudogap.

The paper is organized as follows. In Sec. II we intro-
duce the Hubbard model and describe the SDE flow scheme
employed for the computation of the self-energy, which in
the TUfRG framework correctly accounts for the form-factor
projections in the different channels. We present our results
in Sec. Il A, showing that the long-range AF fluctuations
lead to a gap opening in the SDE approach, in contrast to
the conventional 1¢ flow of the self-energy. Close to the AF
pseudotransition, we find a momentum-dependent gap which
is maximal at the antinodal point and, depending on the pa-
rameter regimes, vanishes in the antinodal one. A qualitative
explanation of this method dependence is given in Sec. IIIC.
We conclude with a summary and an outlook in Sec. IV.

IThe flow of the quasiparticle weight [40] exhibits only a weak
quasiparticle weight suppression as well as momentum anisotropy.
2For related fRG schemes using the SDE, see Refs. [42,43].

II. MODEL AND METHOD
A. The 2D Hubbard model

We present here results for a prototypical model of cor-
related fermions, the 2D Hubbard model. In standard second
quantization the Hubbard Hamiltonian reads

Hz—thA‘;ra@jg—l-UZﬁiTﬁu—MZﬁ,-g, (1
(ijyo i i,o
where ¢ denotes the nearest-neighbor hopping amplitude on
a square lattice and U the local Coulomb repulsion. In the
following we define our energies in terms of # = 1 and restrict
our analysis to half filling () = 1. This is achieved by an
implicit shift of the Hartree part by U (i,) and setting the
chemical potential to u = 0. In this case, the momentum
transfer of (;r, £7) corresponds to perfect AF nesting on the
square-shaped Fermi surface.

B. Functional renormalization group

The characteristic scale-dependent behavior of numerous
strongly correlated electron systems can be treated in a flex-
ible and unbiased way by the fRG (see Refs. [50-53] for a
review). Its starting point is an exact functional flow equation,
which yields the gradual evolution from a microscopic model
action to the final effective action as a function of a flow-
scheme-dependent energy scale. By expanding in powers of
the fields one obtains an exact hierarchy of flow equations
for vertex functions, which in practical implementations is
restricted to the one- and two-particle vertex. Neglecting
the renormalization of three-particle and higher-order particle
vertices yields approximate 1£ flow equations for the self-
energy and two-particle vertex. The underlying approxima-
tions are devised for the weak- to moderate-coupling regime,
where algorithmic advancements brought the fRG for inter-
acting fermions on 2D lattices to a quantitatively reliable level
[29,30].

The substantial improvement with respect to previous fRG-
based computation schemes relies on an efficient parametriza-
tion of the two-particle vertex which takes into account both
the momentum and frequency dependence. Assuming SU(2)
spin-rotation symmetry, the one-particle irreducible vertex
Vo1.00.05.04 (k1, k2, k3, k4) can be expressed by a coupling func-
tion depending on three independent generalized momenta
V(ki, ka, k3) via [37]

V(kl s k27 k3» k4)<71,02,03,a4 = 50],04802,U3V(k1 > k4a k3)

+ 301,0-250—3,04‘/(](1, ka, k3), (2)

with k4 = k; + k3 — k. Then the coupling function can be
channel decomposed by the parquet decomposition [54]

V(ki, ko, k3) = Aopr + @pp(ky + k3, ki, ka)
+ ®p(ka — ki, ki1, kg)
+ @(ks — ko, ki, ka), 3)

where, in the parquet approximation, the fully two-particle
irreducible vertex is approximated by A,p; = U and the
two-particle reducible contributions @, , - in the particle-
particle, particle-hole, and crossed (or transverse) particle-
hole channel are parametrized using a single generalized
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bosonic transfer momentum or frequency as the first argument
and two fermionic ones as the second and third arguments. In
particular, we combine the TUfRG [28,55,56] using a form-
factor expansion for the fermionic momentum dependences
with the full frequency treatment including the fermionic
high-frequency asymptotics [57,58] (see Refs. [29,30] for the
details on the algorithmic implementation).

In addition, we compute the self-energy and its feed-
back in the fRG flow of the two-particle vertex (see also
Refs. [31,59]). Instead of the conventional 1¢ flow equation
for the self-energy, which we recall for completeness

k) = =) VAR K, p) = VAP K ISN(p), ()
p

we employ here the scale derivative of the SDE [33,34]. This
is inspired by its connection to the multiloop extension of the
fRG, which allows one to sum up all the diagrams of the
parquet approximation with their exact weight [44,45] and
hence yields cutoff-independent results [29]. Specifically, the
multiloop equation for the self-energy flow can be derived
from the SDE

Bk, iv)=U Y G, i) = )"

K, Kq iv'io
x VKK, kK+q,iv, v, iv+io)GK', V)
x Gk +q, v+ i0)GK +q, v +io)U, (5)

J

with X(k) = 64,.6, 26,.0,(k), an implicit factor T for each
frequency sum, and the normalization of the momentum sum
with respect to the first Brillouin zone. Here we do not aim at
a quantitative analysis within the multiloop fRG, for which
the comparison to determinant quantum Monte Carlo data
showed that the fRG is remarkably accurate up to moderate
interaction strengths [30]. We rather address a qualitative
description of the spectral properties (with a substantially
reduced numerical effort with respect to fully loop converged
computations) retaining only the multiloop equation for the
self-energy, i.e., the scale derivative of the SDE. Differently
from the conventional 1¢ flow, the scale derivative of the
SDE accounts for the form-factor truncation [30]. Formally,
the derivative with respect to the flow parameter A yields
the conventional 1¢ contribution as well as the multiloop
corrections. The proof thereof reported in Ref. [45] assumes
the equivalence between the different channel representations
of the SDE. However, in the TUfRG only a finite number of
form factors is considered in each channel (typically restricted
to just a few). In this approximation, the transfer momentum
dependence is not fully reconstructed after a translation from
one to another, i.e., the projection between different channel
representations is affected by information losses. We cured
this by implementing the self-energy flow, considering the
most favorable channel representation for each contribution,
directly in the derivative of the SDE (see also Ref. [30])

R (k, iv) = Xg(k, iv) + Xgeek, iv) + 3, (k, iv)
+ Bpn(k, iv) + Xk, iv), (6)

where the dot represents the A derivative and

So(k,iv) =U Y 9,G (K, iv)e* ™", (7a)
K,V
Scea(k, iv) = —U? Y Y " 9,[GN K, iv)G (k + q, iv + iw)G (K + q, iV + iw)], (7b)
k'q iviw
3k, iv) = — Z Zf;;(k)fo(k)4n2UaA [ Z Z 0 (K +k,m, n, v +iv, iv, iv")
Kiv m w’ n
x IO (K + Kk, n,0,iv" +iv, iv")G (K, iv’):|, (7c)
Son(k, iv) == > 3" fr(k) fo(k)dm U d, [ Y Y @b K —k mn v —iv,iv, iv)
K'iv m w’ n
x TI5, (k' — K, n, 0, iv — iv, iV )G (K, iv’)}, (7d)
Yok, iv) = — Z Zf;;(k)fo(k)4n2U3A [ Z Z @%(k/ — Kk, m,n,iv —iv, iv, iv")
Kiv m ' n
x I, (K — K, n, 0, iv' — iv, iv")G* (K, iv’):|, (Te)
with
pn(q, n, m, iw, iv) = / dp f,; (P)fu(P)G(p. iv)G(q + P, iw + iv), (3a)
IM,,(q,n, m,iw, iv) = /dpf:(p)fm(p)G(p, v)G(q — p, iw — iv). (8b)
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If not otherwise specified, we use the single-scale propaga-
tor 9, G" ~ S* = 9, G*|s—const- Note that in Egs. (7b)—(7e),
the derivative with respect to A on the right-hand sides yields
three contributions each. These depend on the (1¢) flow of
the two-particle vertex [29], which supplements Egs. (7)—(7e).
In the flow equations for the vertex, the self-energy X (k) is
inserted into the full Green’s functions on the right-hand sides
without further expansions around the Fermi surface or in
small frequencies.

We observe that, in principle, one could also use directly
the SDE (5), replacing its scale derivative in Egs. (7)—(7e).
However, we prefer a formulation which remains as close as
possible to the original fRG idea involving a differential flow
equation for the self-energy. Besides the more straightforward
numerical implementation of the derivative in an adaptive
differential equation solver, we believe that the close relation
to the multiloop fRG flow by which the proposed SDE scheme
is inspired makes it more intuitive. In fact, including the
Katanin correction or any other higher loop order, as discussed
in Sec. III B, requires anyway the computation of the self-
energy derivative with Egs. (7)—(7e).

For the two-particle vertex,” we consider only a single
local s-wave form factor and a small number of frequencies,
verifying that an additional d-wave form factor as well as
more frequencies do not qualitatively affect the results in the
considered parameter regime. Specifically, we use 8 fermionic
and 17 bosonic frequencies in the low-frequency object de-
pending on all three frequencies. The same numbers are used
in the high-frequency asymptotics of a single fermionic fre-
quency for the remaining bosonic and fermionic frequencies.
The asymptotics of both fermionic frequencies is described by
513 bosonic frequencies. Concerning the transfer momentum
parametrization, in addition to 16 x 16 momentum patches
distributed on an equally spaced grid in the Brillouin zone,
we take into account a finer 5 x 5 grid around the AF peak at
q = (m, ) (see also Fig. 7 for a more detailed convergence
analysis).

We finally note that we use here the so-called interaction
cutoff with G** = AG, which gradually turns on the bare
on-site interaction U [61]. This allows one to translate the
flowing self-energy and two-particle vertex at scale A to the
solution (at the end of the flow) of a rescaled bare vertex
A%U (see Appendix A for the proof). This cutoff choice
is motivated by the possibility to trace the onset of the
gap opening along the flow and identify the pseudocritical
interaction in correspondence to the vertex divergence. The
absolute values depend on the applied flow scheme and for
this reason a quantitative comparison to other cutoffs appears
difficult. At the same time, the analytical arguments as well
as our findings at higher loop order presented below (see
also Ref. [29] for a more detailed discussion of the cutoff
independence of the multiloop fRG) support the robustness of
the qualitative differences between the conventional and the
SDE flow. Therefore, it should be observed independently of
the flow scheme.

3For the convention on the flow equations, see Ref. [60].
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FIG. 1. Self-energy as a function of the flowing interaction U
for 1/T = 10. A comparison of the nodal (circles, solid lines) and
antinodal points (diamonds, dashed lines) for the first and second
Matsubara frequencies (closed and open symbols, respectively) are
shown (a) in the conventional 1£ scheme (b) with the derivative of
the SDE for the self-energy. The crossings in the latter (inset) indicate
the gap opening, occurring first at the antinodal point and then at the
nodal point.

III. RESULTS

A. Self-energy flow versus Schwinger-Dyson equation

We present here results for the self-energy together with an
analysis of the differences between the fRG calculation using
the 1¢ flow equation (4) with respect to the derivative of the
SDE in Eq. (6). In particular, we show how in the latter the
long-range AF fluctuations lead to a gap opening (see also
Appendix B).

Let us first look at the flow of the self-energy displayed in
Fig. 1, for an inverse temperature of 1/7 = 10. Figure 1(a)
corresponds to the fRG calculation with the 1€ flow of the
self-energy and Fig. 1(b) to the scheme with the derivative of
the SDE. We follow the flow at the nodal k, = (7 /2, 7/2)
(circles) and antinodal k,, = (v, 0) (diamonds, solid lines)
momentum points, for both the first (closed symbols) and
second (open symbols, dashed lines) Matsubara frequencies.
The imaginary part of the self-energy is shown as a function of
the flowing interaction U. The end point on the right defines
the so-called pseudocritical interaction at which the maximal
component in one of the channels in the vertex exceeds 103.
Due to the self-energy feedback into the flow of the vertex,
and vice versa, it depends on the flow scheme applied to
the self-energy. In the SDE scheme this divergence sets in at
U = 1.69, which is larger than in 1€, where the flow diverges
atU = 1.64.

This is consistent as the self-energy is larger in the SDE
scheme and therefore its screening of the dominating ph
excitations in the 2D Hubbard model at half filling is stronger
(see also Ref. [29]). In the inset in Fig. 1(b) a close-up of
the crossings of the imaginary parts of the self-energy at
the first and second Matsubara frequencies is shown, which
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at sufficiently low temperatures is associated with a smooth
noncritical transition between a Fermi liquid and an insulating
behavior [27]. In particular, this transition occurs first at the
antinodal momentum point and only for large values of the
bare interaction at the nodal point. The region in between
identifies the pseudogap regime, which we will discuss in the
following.

The presence of quasiparticles in a Fermi liquid is equiva-
lent to a nonzero quasiparticle weight [62]

-1
) ; ©)
v—>0

where v is a real frequency. In a Fermi liquid, we have a
nonzero Z(k) < 1. Non-Fermi-liquid behavior can be sig-
naled by deviations from this, e.g., Z(k) - 0 or Z(k) >
1. Here Z(k) — 0 amounts to an infinitely steep slope of
Re X(v, k) at v = 0 and thus a vanishing of the quasiparticle
weight without any dip or pseudogap feature in the spectral
function, while Z(k) > 1 corresponds to a positive slope of
Re X(v, k) at v = 0 and implies the emergence of a double-
peak structure of the spectral function when this slope is
large enough. In the low-temperature limit, 9, Re (v, k)|,
can be translated to Matsubara frequencies. Then the gap
opening can be observed directly in the imaginary part of
the self-energy. For a Fermi liquid, the imaginary part goes
linearly through the Matsubara frequency zero. In the gapped
regime, Im ¥ bends towards positive large values approaching
the zero- (Matsubara) frequency limit from below and towards
negative large values from above, while in the Fermi liquid
regime the bending is always towards small values. The onset
of a pseudogap can hence be detected by the crossing of the
imaginary parts of the self-energy at the first and second Mat-
subara frequencies (see also Refs. [25,27,63,64]). Therefore,
we study the difference between the latter via

Im 2(k,i372T) —Im X(k, inT)
2nT ’

dRe X(v, k)

Z(k) = <1 -

0 Im X(K, iv)|jy=ixT =

(10)

with 9;, Im X(K, iv)|;y—iz7 < 0 corresponding to the Fermi-
liquid-like regime and 9;, Im X(K, iv)|;,—ir7 > O to a pseudo-
gap at momentum k.

We report 9;, Im X(K, iv)|;y—ixr in Fig. 2, again
for both flow schemes. The zeros corresponding to
d;y Im X(K, iv)|;y=izr = 0 in the SDE scheme (corresponding
to the crossings observed in Fig. 1) can be directly read off.
The gap opening at the antinodal momentum point sets in
first, followed by the one at the nodal point close to the vertex
divergence. Note that the 1¢ flow does not exhibit any zeros.
Using the derivative of the SDE replacing the conventional 1£
flow of the self-energy is therefore crucial for the description
of spectral properties, i.e., for seeing the gap open up.

A more conventional representation of the self-energy as
a function of the Matsubara frequency is provided in Fig. 3
for bare interactions close to the gap opening. Below the gap
opening (for U = 1.55) we observe a Fermi-liquid behavior
with a pronounced upturn towards zero at low frequencies in
both the SDE and the 1¢ flow. At the antinodal momentum
point, the self-energy resulting from the SDE flow already
exhibits a tendency to a non-Fermi-liquid behavior. Once the

0.041

——1/ k,
-1 kan

—e—SDE k,

*
---SDE ka, g
¢

0.021
0.00+

—0.02

divimZ(k, iV)|iv=ir(T

0.0 0.5 1.0 1.5
U

FIG. 2. Plot of 9;, Im X(k, iv) evaluated at iv = iwT as a func-
tion of the flowing interaction U for 1/T = 10. The conventional 1¢
self-energy flow (green) is compared to the one of the derivative of
the SDE (blue). The latter crosses zero for both momentum points
indicating the opening of a gap, while the conventional flow exhibits
a monotonic behavior.

gap is opened, this behavior turns first into a slight downturn
(for U = 1.6) and then to a more pronounced (for U = 1.65)
one at the first Matsubara frequency, while the 1£ results
remain Fermi-liquid-like for all values of U (for comparison,

(a)

—_ _0.05'

X

~N

£ -0.101

——2nd order —1/ —SDE

(b)

— —0.054

x
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£ -0.10
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£ -0.10
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/*‘_-‘_ - -
¢ i i i i
0 2 4 6 8

FIG. 3. Self-energy as a function of the Matsubara frequency iv,
for 1/T =10 and (a) U = 1.55, (b) U = 1.6, (c) U = 1.65, and
(d) U = 1.675 just below and above the gap opening at the nodal
(circles) and antinodal (diamonds) points. The results obtained in
the conventional 1¢ flow are shown in green and the ones from the
derivative of the SDE in blue. Note that for U = 1.65 the 1€ flow has
already diverged. For comparison, also the second-order perturbation
theory for U = 1.55 is shown in gray.
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FIG. 4. Plot of 9;, Im 2(k, iv) evaluated at iv = in T as a func-
tion of the momentum on the Fermi surface.

also the second-order perturbation theory is shown). At the
nodal point, we still find a Fermi-liquid behavior in agreement
with a picture in which the pseudogap opens at the antinodal
points first. For the observation of the gap opening at the nodal
point, we would have to tune the bare interaction very close to
the pseudocritical interaction.

The momentum anisotropy can also be studied in the
evolution of 9;, Im (K, iv)|;,—irr along the Fermi surface,
shown in Fig. 4 for the same parameters. We note that the
spread with momentum is significantly larger in the SDE
flow where the monotonic decrease from the antinodal to the
nodal momentum point crosses zero and opens the gap with
increasing bare interaction first for U = 1.6 in proximity to
the antinodal point. The 1¢ fRG flow instead leads to Fermi-
liquid behavior on the whole Fermi surface.

We now investigate the temperature dependence of the gap
opening, starting from the 1/7 = 10 considered in Figs. 1-4
down to 1/T = 18 (see Fig. 5 for the respective results for
d;y Im 2(K, iv)|;y=iz7). The detected behavior is qualitatively
the same: No gap opening occurs for any temperature in the
1¢ flow, whereas the derivative of the SDE yields a gap which
sets in first at the antinodal point and subsequently at the
nodal point. For decreasing T, the pseudocritical interaction
and with it the gap opening is shifted to lower values, re-
ducing at the same time the distance between the zeros of
d;y Im 2(K, iv)|;y—izr at the antinodal and nodal points and
the pseudocritical scale. This can be seen in Fig. 6, where
we show the temperature dependence of the interaction at
which the gaps open and of the pseudocritical interaction
(gray squares) at which the ph channel exceeds the critical
value and the flow is stopped. We find that the antinodal gap
opening is clearly distinct from the pseudocritical interaction
even for the lowest temperature considered here. In contrast,
the pseudocritical interaction almost coincides with the gap
opening at the nodal point that sets in only a little below.

At the same time, the presented fRG data are sensitive to
the employed parametrization of the two-particle vertex. In
particular, a convergence in frequencies [with minor impact
(see the discussion in Sec. IIB)] and momenta becomes
numerically challenging for lower values of T and is not fully
reached yet. The latter is illustrated in Fig. 7. Upon increasing
the number of patches, the gap opening at the nodal point

(a) 0.00 Fo—we——
1
g —0.02]
]
2
":E_ (b) 0.04-SDE — 1T=10
X —1T=12
T 0.02] —1T=14
rg
0.00 p o o
~0.021

0.00 0.25 050 0.75 1.00 1.25 1.50
U

FIG. 5. Plot of 9;, Im X(k, iv) evaluated at iv = ix T as a func-
tion of the flowing interaction U for different temperatures. Using
(a) the conventional 1¢ self-energy flow, no gap opening occurs
for any temperature, while (b) the derivative of the SDE yields a
gap opening which for decreasing T sets in at lower values of the
effective U.

is shifted closer towards the pseudocritical interaction until
it eventually merges with the latter around 20 k, momentum
points. With a further refinement around q = (77, ) including
15 x 15 instead of the former 5 x 5 patches and covering a
larger momentum area (indicated by the subscript f on the
right-hand side of Fig. 7), the gap opening can be resolved
again as a precursor of the pseudocriticality. In contrast, the
gap opening at the antinodal point does not approach the
pseudocritical interaction. The disappearance of the nodal gap
as a precursor is due to the decreasing region covered by
the fine patching and the consequently reduced resolution of
the AF peak for larger values of k,, i.e., the region becomes
smaller than the peak width. When turning to a larger fine-

1.7 1

~m AF-div.
1.6 —e—Gap at k,

-¢-Gapatks, 0 L7 ¥

515 -
1.4
1.3
0.06 0.07 0.08 0.09 0.10
T

FIG. 6. Flowing interaction U at which the gap opens as a func-
tion of the temperature. The gap opening is shown for the antinodal
point (blue diamonds) and the nodal one (blue circles), which occurs
in the proximity of the AF divergence (gray squares).
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FIG. 7. Flowing interaction U at which the gap opens as a
function of the number of momenta k, (with k, = k, and the subscript
f for an enlarged fine patching region) accounted for in the two-
particle vertex, for 1/7 = 10. The gap at the antinodal point (blue
diamonds) always opens before the AF divergence (gray squares)
sets in, while the gap at the nodal point (blue circles) vanishes with
increasing resolution of the Brillouin zone (see the text for details).
The light blue line corresponds to the parametrization of all other
computations.

patching region (indicated by the subscript f), the peak width
is again covered, explaining the nonmonotonic behavior.

Hence, within the present analysis, the question whether in
the low-temperature regime the gap opening at the nodal point
is stable as a distinct feature from the occurrence of long-
range correlations cannot be answered conclusively. Never-
theless, the data shown here are consistent with the physical
picture emerging from various other state-of-the-art many-
body techniques for the weak- or moderate-coupling regime
of the 2D Hubbard model at half filling, as, e.g., in [6,7,12],
or currently collected in [64]. The AF correlations (associated
with an exponentially increasing correlation length) increase
at lower temperatures and eventually diverge at 7 = 0 when
the ground-state characterized by an AF long-range order is
reached. In this low-temperature regime, long-wavelength AF
fluctuations lead to an enhanced quasiparticle scattering rate
and to the formation of a pseudogap in the single-particle
spectrum (which evolves into a sharp gap in the Slater-like
insulator at T = 0). These fluctuations gradually destroy the
coherent quasiparticles of the Fermi liquid. The crossover
temperature corresponding to the pseudogap opening is not
uniform along the Fermi surface: It is higher at the antinodal
and lower at the nodal points. Eventually, all states of the
Fermi surface are suppressed by AF fluctuations, resulting in
a full gap.

B. Towards full multiloop fRG

The 1¢ description truncates the infinite hierarchy of flow
equations [53] after the two-particle vertex. In the multiloop
extension [44,45], a part of the higher-order vertex contri-
butions is taken into account effectively by including higher
loop contributions to the one- and two-particle vertex flows.
The inclusion of all loop orders yields the parquet approxi-
mation enhancing the pseudocritical interactions and lowering
the pseudocritical temperatures [29] with respect to the 1¢
truncation. According to the Mermin-Wagner theorem [65],
which is fulfilled by the parquet approximation, the instability

(@) 0.00{ > >
1/ T ‘% ——k,
-0.021 0% ~#- Kan
N
W
~0.04/ i
3
T -0.061
L,
= ®) 0.04{SDE $3?
g —1 3¢ t; *
~  0.02{ —1+Kat. 41 b4
£ 2 {3
S 000pe—q — x.’ }
TS ¢
-0.021 \‘;’%./;
—0.04-
0.0 0.5 1.0 1.5 2.0

U

FIG. 8. Plot of 9;, Im 2(k, iv) evaluated at iv = iwT as a func-
tion of the flowing interaction U, for 1/T = 10 and different loop
orders ¢, using both (a) the conventional fRG and (b) the SDE
approach for the self-energy flow, which takes into account the
form-factor projections in the different channels. In the conventional
fRG a tendency towards gap opening is observed only very close to
the pseudocritical temperature without actually leading to a crossing
of the self-energy in the first Matsubara frequencies. In the SDE
approach, the gap opening at the antinodal point is observed also
at higher loop order, while the gap at the nodal point vanishes with
increasing €. For a direct comparison of the gap opening scales and
the onset of the AF divergence we refer to Fig. 9, which includes
higher loop orders.

eventually disappears (this regime is however extremely diffi-
cult to reach numerically). We note that at infinite loop order,
the results no longer depend on the employed flow scheme.
We hence expect the trend observed for the interaction flow
to be qualitatively reproduced also by other flow schemes at
finite loop order.

For the precise form of the multiloop equations, we refer
to Refs. [29,45]. In the SDE scheme for the self-energy, we
replaced both the 1£ equation and multiloop corrections of the
self-energy by Eq. (5). Note that for the Katanin replacement
and in any higher loop order the differentiated propagator
becomes 9,G* = S* + GAL2GA. For the second part of
9, G", the self-energy change has to be known before the
calculation of the vertex flow and, in the SDE scheme, inside
the self-energy flow itself. Here we replace it with the 1¢£ flow
in Eq. (4) independently of the self-energy scheme used. For
a full feedback of the self-energy change according to Eq. (6)
to the Katanin replacement, further iterations within the same
A step should be performed. As the correction is only of
quantitative nature [30], here we neglect these iterations.

In Fig. 8 we present the results for 9;, Im X (k, iv) eval-
uated at iv = inT as a function of the flowing interaction
U, for 1/T = 10 and different loop orders £. While in the
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FIG. 9. Flowing interaction U at which the gap opens as a
function of the loop order ¢, for 1/T = 10. The gap opening at
the antinodal point (blue diamonds) always occurs before the AF
divergence (gray squares), while the gap opening at the nodal point
(blue circles) disappears into the pseudo-ordered phase at higher
loop order. The oscillatory behavior is characteristic of the loop
convergence [29].

conventional fRG no gap opens at any loop order, in the
SDE approach, the gap opening at the antinodal point is
observed also at higher loop order, before the flow has to be
stopped and pseudocriticality is reached. In Appendix A we
show that also for the multiloop flow equations, the scale at
which the interaction flow diverges can be translated into a
pseudocritical interaction.

A direct comparison of the gap opening interaction and the
onset of the AF divergence is shown in Fig. 9 as a function
of the loop order (for 1/T = 10). A trend towards higher
pseudocritical interactions can be observed already at the first
loop orders, while the oscillatory behavior is characteristic for
the loop convergence [29]. The larger pseudocritical interac-
tions could in principle leave more space for the pseudogap
to develop. However, the gap at the nodal point vanishes at
higher loop order, while at the antinodal point it sets in at
a rather small but constant distance from the pseudocritical
line. Therefore, the gap opening tendency is not loop-order
dependent and the only remaining difference between the 1¢£
and SDE schemes is the form-factor truncation. Further, this
indicates indirectly that the gap opening is driven by strong
AF fluctuations (see also Appendix B).

Our results do not contradict the findings of the parquet
approximation [26]. There, for U = 2 a pseudogap occurs at
1/T = 26 and a full gap at 1/T = 30. These temperatures are
presently difficult to access within a multiloop fRG calcula-
tion, due to the required refinement of the momentum and
frequency dependence of the two-particle vertex and the high
number of loop orders needed for convergence.

C. Difference of self-energy flow schemes in the TUfRG

In this section we will discuss the origin of the different gap
opening tendencies in the 1¢ and SDE flow and in particular
address the question why the long-range AF correlations lead
to a gap opening in the flow of the SDE, while their effect is
weakened in the conventional 1¢ flow of the self-energy.

kt 0
F \\‘k;+7“\’= <
i'\ ¢\ -) > ~>
S~ -~
2nd order:
+ l\\( \
~.),/
3rd order:
from @, from O
I TS

FIG. 10. Lowest-order diagrammatic contributions to the SDE
self-energy flow, where solid (dashed) lines carry spin up (down)
and the orange bubbles are projected to the blue ones. The colored
boxes facilitate the comparison to the conventional flow shown in
Fig. 11 (note that due to the restriction to bare Green’s functions not
all corresponding gray boxed diagrams are included).

In the multiloop expansion of the fRG, the two schemes
are formally equivalent. Differences are introduced only by
truncating the form-factor expansion, which prevents the full
reconstruction of the SDE at loop convergence. The results
and discussion in Sec. III B rule out the finite loop order
as being responsible for the qualitatively different physical
behavior between the conventional and the SDE flow.

The difference between the self-energy results as obtained
from the two flow schemes is hence to be attributed to
the truncation of the form-factor expansion. As discussed in
Sec. III B, the approximations introduced by the projections
between the different channel representations imply that the
1¢ and SDE flows are not equivalent anymore. We first focus
on the SDE (5) together with the corresponding flow equation
(6) and consider the lowest orders in the bare interaction U
(see Fig. 10). We decompose the vertex into the different chan-
nel contributions and for simplicity neglect the self-energy
corrections in the propagators. The second-order diagram is
not associated with any specific channel and can be computed
by using fast Fourier transforms [see also Eq. (7b)]. For a
better comparison to the conventional 1¢ flow, the different
colors of the boxes indicate the topology while the ones of
the Green’s functions refer to the projections, i.e., the order
in which the (truncated to the s wave) bubbles are inserted. In
the present convention, the orange bubble is inserted into the
blue one, which is then closed by a single Green’s function
(black). We note that for the diagrams shown in Fig. 10, the
restriction to the s wave does not introduce any approximation
in the projection of the different channel representations.

Now we compare these diagrams with those of the standard
1¢ flow shown in Fig. 11. We insert the parquet decomposition
of the two-particle vertex into the flow equation for the self-
energy, being aware that in the 1¢ approximation this holds
only up to second order, and group the different contributions
according to their topology (indicated by the colored boxes),
in analogy to Fig. 10. The gray box at first order [Fig. 11(a)]
is the tadpole diagram, while the gray box at second order
[Fig. 11(b)] is a self-energy correction thereof, which is
included in the SDE flow once the self-energy corrections in
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FIG. 11. Lowest-order diagrams for the conventional self-energy flow, with the (a) F;, and (b) F}4 contributions. All propagators are bare
ones (neglecting any self-energy correction). In order to facilitate the comparison with the SDE flow shown in Fig. 10, we group them in
tadpole diagrams (gray boxes), equivalent second-order diagrams (red boxes), and third-order diagrams which are formally equivalent to the
third-order diagrams from @, (®,;) in the SDE flow [yellow (green) boxes] but partly affected by approximations due to the form-factor

expansion and their projections in the different channels.

the Green’s functions are accounted for (despite not being
displayed in Fig. 10). The red ones at the second order
include three contributions. These amount to exactly the same
diagram in the SDE (see Fig. 10), as the blue bubble has no
other contributions than the s wave. At third order, the red
boxes with internal gray boxes are associated with self-energy
corrections of the second-order diagram, while the gray ones
with and without internal red boxes correspond to self-energy
corrections of the first-order diagram. Most importantly, there
are five different yellow and green boxes at third order which
represent the contributions to the particle-particle and crossed
particle-hole diagram in the SDE (see Fig. 11). Here only a
single one of each is correctly accounted for in the s wave.
That the others are only correct in the infinite form-factor
limit can be seen from the example of the first green diagram
in the second line for F} : Here the blue bubble gets non-s-
wave contributions due to the insertion of the orange bubble.
In the s-wave (or any few-form-factor) truncation, these are
neglected. This explains why we obtain different results for
the two self-energy flow schemes.

In order to underline that the different form-factor approx-
imation of the crossed particle-hole channel is responsible
for the flow-scheme-dependent gap opening tendencies, we
analyze the lowest-order contributions of the latter (e.g., the
green boxes in Fig. 10 represent the second order). The cor-
responding self-energy diagrams up to fourth order are shown
in Fig. 12; the extension to higher orders is straightforward.
The resulting 9;, Im X(k, iv) is reported in Figs. 13 and 14
for the fourth and seventh orders in U. The downturn of
05y Im (K, iv) at small U is due to the second-order diagram
in Fig. 12. This is compensated by higher-order contributions
leading to a zero in 9;, Im X(K, iv). The effect of the crossed
particle-hole channel contributions is more pronounced at
the antinodal point (see Fig. 13). Concerning the two flow
schemes, in the SDE flow the zero crossing is observed first
at fourth order at roughly U = 4.8, while all other crossings

occur only at much larger values of U. For higher orders,
the zero crossings shift to smaller interactions. At the seventh
order both flows open a gap first at the antinodal point and
then at the nodal one, consistently with the physical picture
obtained by the fRG results of Fig. 2. Note that in the SDE
flow both gaps open before the first gap opening in the
conventional 1¢ flow sets in. This can be seen also in the
gap opening as a function of order in U (see Fig. 14). With
increasing order in U, the gap opening occurs at lower values

SDE 1/-flow
(') (')
S’ N’

HES 2N Mgy

———— ——

_____

it K G g )
S . +ti X

————

(a) (b)

FIG. 12. Comparison of the lowest-order diagrams describing
the contribution of the crossed particle-hole channel to the self-
energy, in (a) the SDE and (b) the conventional 1¢ flow. The results
are shown in Figs. 13 and 14.
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FIG. 13. Plot of 9;, Im X(k, iv) evaluated at iv = iz T resulting
from the contributions of the crossed particle-hole channel up to
the (a) fourth and (b) seventh order in U, as illustrated in Fig. 12.
While at the second order no gap opens, starting from the third both
approaches lead to a gap opening at the nodal and antinodal points at
some large value of U (not shown). At the fourth order, the SDE flow
opens a gap at the antinodal point first. At the seventh order one can
already see that both flow schemes open a gap first at the antinodal
point and then at the nodal one. Note that in the SDE flow both gaps
open before the first gap opening in the conventional 1¢ flow sets in.
For a study of the gap opening as a function of order in U see Fig. 14.

of U. While the qualitative behavior of the SDE and 1¢ flow
is the same, the gaps at the antinodal point and then at the
nodal point open first in the former, followed by the ones in
the latter.

We note that in the fRG calculation the gap opening
sets in at lower interactions due to the resummation of all
orders. In fact, the perturbation theory does not capture the
AF divergence. Despite these limitations, the present analysis
illustrates the order in which the gap opening occurs: first in
SDE flow at the antinodal point and then at the nodal point
and second, if we ignore the vertex divergence, in the 1¢£ flow
at the antinodal point and then at the nodal point.

6 Y
51 \\.\
4
D —o— 1/ k;,
3{ --1/ kan
—e—SDE k
27 -#- SDE ka,
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4 5 6 7 8
Perturbation order

FIG. 14. Gap opening as a function of order in U at 1/T = 10
as extracted from 9;, Im X (K, iv) evaluated at iv = in T, resulting
from the contributions of the crossed particle-hole channel only.
With increasing order, the gap opening occurs at lower values of U.
The gap at the antinodal point opens first and then the gap at the
nodal point, consistently with the full calculation in Fig. 2. While the
qualitative behavior of the SDE and 1¢ flow is the same, the gaps
in the former open first, followed by the ones in the latter. Note that
the pseudocritical interaction is not captured in this approach as a
divergence of the vertex occurs only at infinite order.

Finally, we emphasize that the two schemes yield dif-
ferent results only in a truncated form-factor expansion. A
straightforward patching of all three-momentum dependences
on the same grid involves no information loss in the projection
from one channel to another. At the same time, the fine grid
required to resolve the AF divergence in the magnetic channel
implies a huge numerical cost. Similarly, also in the TUfRG
scheme both schemes should converge to the same result for
an increasing number of form factors. However, this number
may be as large as the bosonic patching points.

IV. CONCLUSIONS AND OUTLOOK

We have presented numerical results for the electron self-
energy of the 2D Hubbard on the square lattice at half filling
and perfect nesting, using an implementation of the TUfRG.
The main finding is that our refined prescription for the
calculation of the self-energy permits one to see the opening of
a mildly anisotropic pseudogap at low temperatures and suffi-
cient coupling strengths. Although foreshadowed in early N-
patch fRG works [35,36], seeing the pseudogap opening had
not been possible at the same degree of quantitative control
with previous fRG approaches. The key insight of this paper
on TUfRG is that the truncation of the form-factor expansion
for the fermionic momentum dependence of the interaction
does affect the self-energy flow differently depending on how
the latter is computed. Our way via the Schwinger-Dyson
equation reduces the truncation loss for the self-energy and
thus allows one to observe the pseudogap opening.

While in this work we only claim qualitative accuracy,
we have argued previously [30] that the same (multiloop)
fRG implementation also compares favorably with different
numerical solutions of the parquet equation (in the so-called
parquet approximation) and most importantly, with deter-
minant quantum Monte Carlo, in situations where the sign
problem is not present. This emphasizes the high degree of
numerical control of the method and that one can obtain not
only qualitative information but also quantitatively correct
results, at least for the one-band Hubbard model.

We believe that fRG should be a welcome addition to
the toolbox of theoretical methods that can compute spectral
properties, as in general it has a high-momentum resolution,
decent flexibility regarding the model and system parameters,
and an advantageous transparency as it allows one to identify
the relevant interaction processes for a specific phenomenon.
The next phase of research should now strive for improved
numerical performance of the current fRG algorithm such that
spectral and ordering properties of a wider class of correlated
quantum materials can indeed be studied at a similar quantita-
tive level.
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APPENDIX A: SCALE INVARIANCE IN THE MULTILOOP
INTERACTION FLOW

In the interaction flow, the scale A can be translated to the
effective interaction [61]. This implies that at the scale A, the
flow for a bare interaction U corresponds to the final result of
a flow with bare interaction A2U . Here we prove this property
to hold for all loop orders, specifically,

Tau(PU) =124 U), (Ala)

Vau(PU) = PV (U), (Alb)
where the flow scale is indicated by the subscript and the bare
interaction in parentheses. If V, (U) diverges at some A < 1,
we can set / = A and find that the vertex would diverge
exactly at A = 1 for a bare interaction A%U.

If at every loop order

Tau(PU) = PEAU), (A2a)

Vau(PU) = PV (U) (A2b)
is satisfied, we can show Egs. (Al) by using the following
induction procedure. It is assumed that the integration in A is
done in discrete steps. At each step n, A takes the value A,
and we have to consider the equation

Va,U) =Va, ,(U)+ (Ay — Ay 1)V, (U). (A3)
As the base case we consider
Vaou(IPU) = 1%V, (U) = I*U. (A4)

With the induction hypothesis and the condition we can
perform the induction step

2 2 Ay An1)y, 2
VanoU) = Vp,  n(17°U0) + T "] Va,n(7U)
=1V, (U) + P(Ay — Aye1 )V, (U)
=1’V (U). (A5)

The same procedure can be performed for the self-energy with
B, (U) = Z,  (U) + (Ay — Ap_)EA,(U)  (A6)

and the base case
Tag(IPU) = p,(U) =0. (A7)

Using the assumption and the condition, the induction step
yields

Ay Auy)
Ean(PU) = 2, 1 (PU0) + (Tn - l)EA/ZUZU)
=135, ,(U)+ (A, — Ay )EAU)
=1%,,(U). (A8)

For the proof of the conditions (A2) we have to use the
Green’s function and single-scale propagator, which in the
interaction flow are defined as

1

iw+e(k) — AZA(U)’
iw + €(k)

liw + e(k) = AZA(U)]?

GaU) =A (A9a)

SA(U) = (A9b)
respectively, and hence

G (ZZU)—A 1
At T Lo+ e(k) — 230 ,(20)

_ A ! NI
liotelk)— A U) 1
SA/Z(ZZU) _ iw+ €(k) .
[iw + €(k) — £ Zx(12U)]
o + € (k) — S\(U). (A1Ob)

T o+ etk)—ATAU)?

where we used the assumption . The single-scale propagator
retains the same scaling property also after the Katanin sub-
stitution

iw+ek)+ A2Z,(U)
[iw + e(k) — AZA(U)]?
= SA(U) + GA(U)ZA(U)GAU)

as we can use the condition and the scaling property of the
Green’s function in

S8 (PU) = Sap(PU) + Gpp(PUYEA (PU)G A, (1PU)

SKU) =

(Al1)

1 . 1
=S\(U) + YGA(U)IZEA(U)IGA(U)

=S (U).

For the proof of the conditions (A2), we restrict ourselves
to a single channel for simplicity (it holds analogously for
their combination). In the 1¢ approximation, Eqs. (A2) are
shown easily via

(A12)

San(PU) = 2SA,,/1(12U)VA,,,I (P
=/’ iS,\"VAH(U) =I’3,(U), (Al3a)
Va,n(PU) = XVAH J(PUYGA, i (PU)SA, n(IPU)
x Va, (IPU)
= ivAH (U)G, (U)Sn, (U Wi, ,U)

= 1*V,,(U),

which are satisfied both with and without self-energy feed-
back and also for the Katanin substitution replacing S, (U) by
Sf (U). For the m{ proof, we need to show in addition that
if the equations at a specific A, are true for the loop order
£, they are also true for £ + 1. For this induction we consider
left, right, and central diagrams: the left m¢ correction is

& =1 o Tya 0 Va, (Al14)

(A13b)
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where IL, =" ®% , and n denotes the channel and will
be omitted in the following; the right m{ correction is related
to Eq. (A14) by an exchange of the position of / and V which
does not change the structure and hence the scaling property;
the central m/ correction reads

q')i\entral.H—Z =Vyollso Iﬁ oITp o Vi, (A15)

The left, right, and central contributions are added to the 1¢
vertex flow, which has been considered above and shown to
satisfy the scaling property. Therefore, the remaining equation
to be proven flow step after flow step and loop order after loop
order is

Vi, U) =1 (U)GA,(U)GA, (UVa,  (U)
(U)Ga,(U)GA, W U)

(U)Ga, ()G, (U)I > (U)GA,(U)
(A16)

+ Va,
+ Va,
X Gp,(U)Va,_ (U).

While for A, = Ao, we get trivially for all loop orders

Vi, /(PU) =0 =V (U) (A17)

for A, we refer to the following equations for any flow step
A,. There we have to consider two base cases as the multiloop

J

correction according to Eq. (A16) depends on both £ — 1 and
£ — 2. The first is actually the £ = 1 contribution and the
second the £ = 2 contribution

Vi (PU) = ivﬁj(le)SA” J(PUYGA, i (PUWZ(IPU)

I=,020)

x Ga,ji(IPU)Gp, i (IPU YV, 1 (IPU)
+ (right ~ left) 4+ (central = 0)

_ P XC,Vﬁ?l(U)sAn(U)GA“(U Wi )

x Ga,(U)GA, (U =PViZ2U).  (AlB)

Here we used Eq. for Vlfuz/ll(le) and also for V,,_, ;(I*U).
The latter is only true if we apply the induction proof for each
A, independently (and in increasing order of n). We note that
if the condition (A16) is true, then

L (PU) = Vi i (PUSA, n(PUYG A, (PUWVL (R0,

Vi, (PU) = I (PU)YGA, i (PU)GA, i (IPUVa, i (IPU) + (right ~ left)

+ Vo, (PUYG A, (PUYG p, 1 (PO (PUYG A, 1 (PUYG A, g (PU WV, i (1PU)

_ 13561 l l 2
=l (U)ZGAH(U)IGAn(U)l Va

+ 12V,

n—1

=IVy (U),

which proves the scaling property of the vertex flow.

Finally we turn to the two multiloop corrections of the
self-energy, for which we simply have to show Eq. in order
to repeat the procedure as outlined in Eq. (A8). The first
multiloop correction is

S (U) = — j,GA,,(U )[2Va,(U) = Va, ()], (A22)

satisfying the condition of the scale property

- jGM(ZZU)

X [2Va, i (IPU) =V, (IPU)]

2;13/,(12U)

=— i ;GAn(U)[ZISVAn(U) =1V, )]
=rEPw). (A23)

The second correction reads

SW) = - i‘gSAn(U )[2Va, (U) = Va, ()], (A24)

1 1 37e-2770 1 1 2
U)7Ga,(U)7Ga, UL “(U)7GA, (U)7 G, UV, (U)

(A19)
[ PU) = Vi (PUYSA, i (PU)YG A, (PU WU,
(A20)
We will use these equations in the induction step
(U) + (right ~ left)
(A21)

[
where 855, (U) = Gy, (U)3}(U)G,,(U), and also satisfies
the condition

=2,PU) = - imn J(PU[2Va, i (1PU) = Vi, 1 (1PU)]

- — zasAn(U)[zlsz,l(U ) = PV, (U)]

=1EPW), (A25)
where we used that §S,,(U) scales as the single-scale propa-
gator (with Katanin substitution) in Eq. (A12).

In addition, we verified also numerically that the scaling
property is satisfied at any loop order.

APPENDIX B: IMPORTANCE OF THE CROSSED
PARTICLE-HOLE CONTRIBUTION

Here we discuss the role of the crossed particle-hole chan-
nel @ for the gap opening (see also Refs. [22,46,47]). This
channel translates directly to the magnetic channel, which
dominates the physics at half filling and in a 1¢ fRG diverges
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at a pseudocritical interaction. Let us therefore focus on

Tk, iv) = =" " fr) fo(k)dn’U

K'iv m
X E E prh(k’ —k,m,n,iv —iv,iv, iv")
iv n

x (k' — Kk, n,0, v —iv, v")GK', iv')

(BI)
and neglect all other contributions to
2k, iv) = Xg(k, iv) + Zgeelk, iv) + 2,,(k, iv)
+ Xk, iv) + Xk, iv). (B2)

Close to the divergence, ®-; exhibits a very strong s-wave
component such that we can neglect other form-factor contri-
butions and approximate Eq. (B1) by

Sk, iv) & — Z U Z Ok’ —k, 0,0, v —iv, iv, iv")
K'iv’ "
X Tk — Kk, 0,0, v — iv, V)G, iv').
(B3)

Using the high-frequency asymptotics of the two-particle
vertex [58] we obtain

Sk, iv) &~ = Y (K, (K —k, 0,00 — iv, iv)
K'iv'
+ IClﬁ(k/ —k, v —iv)]IGK,iv'). (B4)
Here IClﬁ, which is proportional to the crossed-particle

hole or to the (negative) magnetic susceptibility, yields the
strongest contribution and can be approximated by

Ky (K =K, iv" —iv) % k(e 8iv—iv=0K 77 (7, ), 0)

~ =28k —k=(r,7)0iv—iv=0XAF,  (B5)

leading to the expression for the self-energy
Xk, iv) ~ 2xarG(k + (7, ), iv) (B6)
A 2XAF (B7)

v+ €k+(7,7) .

For momenta on the Fermi surface exi(r ) =0, the
crossed particle-hole contribution to the imaginary part of
the self-energy is —2xar/nT for the first and —2xar/37T
for the second Matsubara frequency. For momenta on
the Fermi surface we thus obtain 9; Im X(k, iv) =
2xag/372T? > 0. For comparison, we estimate Im 2 (k, iv =

(@) 0.00 f <—
1/

—0.01 1

—0.02 1
£ -0.03]
L
,s;(b) 0.04-SDE o ’ *
= ——pp + ph + ph Et
x -
- ——ph + ph 2
W 0.02 1 _
£ 8
=
S

0.001 ¢——=
—0.02 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50
U

FIG. 15. Plot of 9;, Im X (K, iv) evaluated at iv = iw T as a func-
tion of the flowing interaction U for 1/7" = 10 and different channel
approximations with both (a) the conventional fRG and (b) the SDE
approach for the self-energy flow. Neglecting the pp and ph channels
does not qualitatively affect the appearance of the gap opening, ex-
cept for the reduction of the critical scale, which eventually prevents
its observation at k,,.

inT) = —2nTXAF/(n2T2 + 16) and Im X(k, iv =i3nT) =
—6mT xap/(972T? + 16) for the momenta k = (0, 0) and
k = (7, ), with €¢,0) = —€,») = —4. In this simplified
analysis, 0;,Im X at these momenta is negative for

T > ﬁ = 0.735 and therefore presents no gap opening

for higher temperatures.

Note that the self-energy in Eq. (B7) basically coincides
with the phenomenological ansatz of Eq. (7) in [67]. This
indicates that the phenomenology arising from the numerical
study here may indeed be useful to explain pseudogap features
in correlated materials like high-temperature superconductors.

If the crossed particle-hole channel drives the gap opening,
suppressing the contribution of the other channels should
not change qualitatively the results (see Fig. 15). Setting the
particle-particle channel to zero (orange) or setting both the
direct particle-hole and particle-particle channels to zero does
not open a gap in the 1£ scheme and preserves the gap at the
antinodal point in the SDE scheme. At the nodal point, where
the gap opening is unstable with respect to the momentum
patching points and the loop order, no gap occurs when only
the crossed particle-hole channel is taken into account.

[11 P. A. Lee, T. M. Rice, and P. W. Anderson, Fluctuation
Effects at a Peierls Transition, Phys. Rev. Lett. 31, 462
(1973).

[2] M. Sadovskii, Exact solution for the density of electronic states
in a model of a disordered system, J. Exp. Theor. Phys. 50, 989
(1979).

033068-13



HILLE, ROHE, HONERKAMP, AND ANDERGASSEN

PHYSICAL REVIEW RESEARCH 2, 033068 (2020)

[3] L. Bartosch and P. Kopietz, Exact numerical calculation of the
density of states of the fluctuating gap model, Phys. Rev. B 60,
15488 (1999).

[4] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J.
Zaanen, From quantum matter to high-temperature supercon-
ductivity in copper oxides, Nature (London) 518, 179 (2015).

[5] R. Comin, A. Frano, M. M. Yee, Y. Yoshida, H. Eisaki, E.
Schierle, E. Weschke, R. Sutarto, F. He, A. Soumyanarayanan,
Y. He, M. Le Tacon, I. S. Elfimov, J. E. Hoffman, G. A.
Sawatzky, B. Keimer, and A. Damascelli, Charge order driven
by Fermi-arc instability in Bi,Sr,_,La,CuOg¢,s, Science 343,
390 (2014).

[6] C. Huscroft, M. Jarrell, T. Maier, S. Moukouri, and A. N.
Tahvildarzadeh, Pseudogaps in the 2D Hubbard Model, Phys.
Rev. Lett. 86, 139 (2001).

[7] D. Sénéchal and A.-M. S. Tremblay, Hot Spots and Pseudogaps
for Hole- and Electron-Doped High-Temperature Superconduc-
tors, Phys. Rev. Lett. 92, 126401 (2004).

[8] B. Kyung, S. S. Kancharla, D. Sénéchal, A.-M. S. Tremblay, M.
Civelli, and G. Kotliar, Pseudogap induced by short-range spin
correlations in a doped Mott insulator, Phys. Rev. B 73, 165114
(20006).

[9] A. Macridin, M. Jarrell, T. Maier, P. R. C. Kent, and
E. D’Azevedo, Pseudogap and Antiferromagnetic Correla-
tions in the Hubbard Model, Phys. Rev. Lett. 97, 036401
(20006).

[10] A.-M. S. Tremblay, B. Kyung, and D. Sénéchal, Pseudogap
and high-temperature superconductivity from weak to strong
coupling. Towards a quantitative theory (review article), Low
Temp. Phys. 32, 424 (2006).

[11] E. Gull, O. Parcollet, P. Werner, and A. J. Millis, Momentum-
sector-selective metal-insulator transition in the eight-site dy-
namical mean-field approximation to the Hubbard model in two
dimensions, Phys. Rev. B 80, 245102 (2009).

[12] E. Gull, M. Ferrero, O. Parcollet, A. Georges, and A. J.
Millis, Momentum-space anisotropy and pseudogaps: A com-
parative cluster dynamical mean-field analysis of the doping-
driven metal-insulator transition in the two-dimensional Hub-
bard model, Phys. Rev. B 82, 155101 (2010).

[13] E. Gull and A. J. Millis, Energetics of superconductivity in the
two-dimensional Hubbard model, Phys. Rev. B 86, 241106(R)
(2012).

[14] D. J. Scalapino, A common thread: The pairing interaction
for unconventional superconductors, Rev. Mod. Phys. 84, 1383
(2012).

[15] O. Gunnarsson, T. Schifer, J. P. F. LeBlanc, E. Gull, J. Merino,
G. Sangiovanni, G. Rohringer, and A. Toschi, Fluctuation Di-
agnostics of the Electron Self-Energy: Origin of the Pseudogap
Physics, Phys. Rev. Lett. 114, 236402 (2015).

[16] O. Gunnarsson, T. Schifer, J. P. F. LeBlanc, J. Merino, G.
Sangiovanni, G. Rohringer, and A. Toschi, Parquet decompo-
sition calculations of the electronic self-energy, Phys. Rev. B
93, 245102 (2016).

[17] B. Kyung, J. S. Landry, D. Poulin, and A.-M. S. Tremblay,
Comment on “Absence of a Slater Transition in the Two-
Dimensional Hubbard Model”, Phys. Rev. Lett. 90, 099702
(2003).

[18] B. Kyung, V. Hankevych, A.-M. Daré, and A.-M. S. Tremblay,
Pseudogap and Spin Fluctuations in the Normal State of the
Electron-Doped Cuprates, Phys. Rev. Lett. 93, 147004 (2004).

[19] V. Hankevych, B. Kyung, A. M. Daré, D. Sénéchal, and A. M.
Tremblay, Strong- and weak-coupling mechanisms for pseudo-
gap in electron-doped cuprates, J. Phys. Chem. Solids 67, 189
(2006).

[20] W. Wu, M. Ferrero, A. Georges, and E. Kozik, Controlling
Feynman diagrammatic expansions: Physical nature of the
pseudogap in the two-dimensional Hubbard model, Phys. Rev.
B 96, 041105(R) (2017).

[21] E. Gull, O. Parcollet, and A. J. Millis, Superconductivity and
the Pseudogap in the Two-Dimensional Hubbard Model, Phys.
Rev. Lett. 110, 216405 (2013).

[22] Y. M. Vilk and A.-M. S. Tremblay, Non-perturbative many-
body approach to the Hubbard model and single-particle pseu-
dogap, J. Phys. I France 7, 1309 (1997).

[23] Y. M. Vilk and A.-M. S. Tremblay, Destruction of Fermi-
liquid quasiparticles in two dimensions by critical fluctuations,
Europhys. Lett. 33, 159 (1996).

[24] S. Moukouri, S. Allen, F. Lemay, B. Kyung, D. Poulin, Y. M.
Vilk, and A.-M. S. Tremblay, Many-body theory versus simu-
lations for the pseudogap in the Hubbard model, Phys. Rev. B
61, 7887 (2000).

[25] T. Schifer, F. Geles, D. Rost, G. Rohringer, E. Arrigoni, K.
Held, N. Bliimer, M. Aichhorn, and A. Toschi, Fate of the false
Mott-Hubbard transition in two dimensions, Phys. Rev. B 91,
125109 (2015).

[26] C. J. Eckhardt, C. Honerkamp, K. Held, and A. Kauch, Trun-
cated unity parquet solver, Phys. Rev. B 101, 155104 (2020).

[27] FE. Simkovic, J. P. F. LeBlanc, A. J. Kim, Y. Deng, N. V.
Prokof’ev, B. V. Svistunov, and E. Kozik, Extended Crossover
from a Fermi Liquid to a Quasiantiferromagnet in the Half-
Filled 2D Hubbard Model, Phys. Rev. Lett. 124, 017003
(2020).

[28] J. Lichtenstein, D. Sanchez de la Pefia, D. Rohe, E. Di Napoli,
C. Honerkamp, and S. Maier, High-performance functional
renormalization group calculations for interacting fermions,
Comput. Phys. Commun. 213, 100 (2017).

[29] A. Tagliavini, C. Hille, F. B. Kugler, S. Andergassen, A. Toschi,
and C. Honerkamp, Multiloop functional renormalization group
for the two-dimensional Hubbard model: Loop convergence of
the response functions, SciPost Phys. 6, 009 (2019).

[30] C. Hille, F. B. Kugler, C. J. Eckhardt, Y.-Y. He, A. Kauch,
C. Honerkamp, A. Toschi, and S. Andergassen, Quantita-
tive functional renormalization-group description of the two-
dimensional Hubbard model, arXiv:2002.02733.

[31] D. Vilardi, C. Taranto, and W. Metzner, Nonseparable fre-
quency dependence of the two-particle vertex in interacting
fermion systems, Phys. Rev. B 96, 235110 (2017).

[32] D. Vilardi, Functional renormalization group for strongly inter-
acting Fermi systems, Ph.D. thesis, Universitit Stuttgart, 2018.

[33] J. Schwinger, On the green’s functions of quantized fields. I,
Proc. Natl. Acad. Sci. USA 37, 452 (1951).

[34] FE. J. Dyson, The s matrix in quantum electrodynamics, Phys.
Rev. 75, 1736 (1949).

[35] D. Rohe and W. Metzner, Pseudogap at hot spots in the two-
dimensional Hubbard model at weak coupling, Phys. Rev. B 71,
115116 (2005).

[36] A. A. Katanin and A. P. Kampf, Quasiparticle Anisotropy
and Pseudogap Formation from the Weak-Coupling Renor-
malization Group Point of View, Phys. Rev. Lett. 93, 106406
(2004).

033068-14



PSEUDOGAP OPENING IN THE TWO-DIMENSIONAL ...

PHYSICAL REVIEW RESEARCH 2, 033068 (2020)

[37] C. Honerkamp, M. Salmhofer, N. Furukawa, and T. M.
Rice, Breakdown of the Landau-Fermi liquid in two dimen-
sions due to umklapp scattering, Phys. Rev. B 63, 035109
(2001).

[38] C. Honerkamp, Electron-doping versus hole-doping in the 2D
t —t' Hubbard model, Eur. Phys. J. B 21, 81 (2001).

[39] S. Uebelacker and C. Honerkamp, Self-energy feedback and
frequency-dependent interactions in the functional renormaliza-
tion group flow for the two-dimensional Hubbard model, Phys.
Rev. B 86, 235140 (2012).

[40] C. Honerkamp and M. Salmhofer, Flow of the quasiparticle
weight in the N-patch renormalization group scheme, Phys.
Rev. B 67, 174504 (2003).

[41] D. Zanchi, Angle-resolved loss of Landau quasiparticles in 2D
Hubbard model, Europhys. Lett. 55, 376 (2001).

[42] L. Bartosch, H. Freire, J. J. R. Cardenas, and P. Kopietz,
A functional renormalization group approach to the anderson
impurity model, J. Phys.: Condens. Matter 21, 305602 (2009).

[43] K. Veschgini and M. Salmhofer, Schwinger-Dyson renormal-
ization group, Phys. Rev. B 88, 155131 (2013).

[44] F. B. Kugler and J. von Delft, Multiloop Functional Renormal-
ization Group that Sums up all Parquet Diagrams, Phys. Rev.
Lett. 120, 057403 (2018).

[45] F. B. Kugler and J. von Delft, Multiloop functional renormaliza-
tion group for general models, Phys. Rev. B 97, 035162 (2018).

[46] A. Abanov, A. V. Chubukov, and J. Schmalian, Quantum-
critical theory of the spin-fermion model and its application to
cuprates: Normal state analysis, Adv. Phys. 52, 119 (2003).

[47] X. Montiel, T. Kloss, and C. Pépin, Effective SU(2) theory for
the pseudogap state, Phys. Rev. B 95, 104510 (2017).

[48] D. Furman and M. Blume, Ornstein-Zernike expression for
correlation functions near a tricritical point, Phys. Rev. B 10,
2068 (1974).

[49] A.-M. Daré, Y. M. Vilk, and A. M. S. Tremblay, Crossover
from two- to three-dimensional critical behavior for nearly
antiferromagnetic itinerant electrons, Phys. Rev. B 53, 14236
(1996).

[50] M. Salmhofer, Renormalization: An Introduction (Springer,
Berlin, 1999).

[51] J. Berges, N. Tetradis, and C. Wetterich, Non-perturbative
renormalization flow in quantum field theory and statistical
physics, Phys. Rep. 363, 223 (2002).

[52] P. Kopietz, L. Bartosch, and F. Schiitz, Introduction to the
Functional Renormalization Group, Lecture Notes in Physics
Vol. 798 (Springer, Berlin, 2010).

[53] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K.
Schonhammer, Functional renormalization group approach to
correlated fermion systems, Rev. Mod. Phys. 84, 299 (2012).

[54] C. Karrasch, R. Hedden, R. Peters, T. Pruschke, K.
Schonhammer, and V. Meden, A finite-frequency func-
tional renormalization group approach to the single impu-
rity anderson model, J. Phys.: Condens. Matter 20, 345205
(2008).

[55] C. Husemann and M. Salmhofer, Efficient parametrization of
the vertex function, 2 scheme, and the 7, ' Hubbard model at
van hove filling, Phys. Rev. B 79, 195125 (2009).

[56] W.-S. Wang, Y.-Y. Xiang, Q.-H. Wang, F. Wang, F. Yang, and
D.-H. Lee, Functional renormalization group and variational
monte carlo studies of the electronic instabilities in graphene
near % doping, Phys. Rev. B 85, 035414 (2012).

[57] G. Rohringer, A. Valli, and A. Toschi, Local electronic correla-
tion at the two-particle level, Phys. Rev. B 86, 125114 (2012).

[58] N. Wentzell, G. Li, A. Tagliavini, C. Taranto, G. Rohringer, K.
Held, A. Toschi, and S. Andergassen, High-frequency asymp-
totics of the vertex function: Diagrammatic parametrization and
algorithmic implementation, arXiv:1610.06520.

[59] A. Eberlein, Self-energy effects in functional renormalization
group flows of the two-dimensional ¢ — ¢ Hubbard model away
from van hove filling, Phys. Rev. B 92, 235146 (2015).

[60] C. Hille, The role of the self-energy in the functional renormal-
ization group description of interacting Fermi systems, Ph.D.
thesis, Universitit Tiibingen, 2020.

[61] C. Honerkamp, D. Rohe, S. Andergassen, and T. Enss, Interac-
tion flow method for many-fermion systems, Phys. Rev. B 70,
235115 (2004).

[62] G. D. Mahan, Many-Particle Physics (Springer, New York,
2000).

[63] T. Schifer, A. Toschi, and K. Held, Dynamical vertex approxi-
mation for the two-dimensional hubbard model, J. Magn. Magn.
Mater. 400, 107 (2016).

[64] T. Schifer, N. Wentzell, F. Simkovic, Y.-Y. He, C. Hille, M.
Klett, C. J. Eckhardt, B. Arzhang, V. Harkov, F.-M. Le Régent,
A. Kirsch, Y. Wang, A. J. Kim, E. Kozik, E. A. Stepanov, A.
Kauch, S. Andergassen, P. Hansmann, D. Rohe, Y. M. Vilk,
J. P. E LeBlanc, S. Zhang, A.-M. S. Tremblay, M. Ferrero,
O. Parcollet, and A. Georges, Tracking the footprints of spin
fluctuations: A multi-method, multi-messenger study of the
two-dimensional Hubbard model, arXiv:2006.10769.

[65] N. D. Mermin and H. Wagner, Absence of Ferromagnetism
or Antiferromagnetism in One- or Two-Dimensional Isotropic
Heisenberg Models, Phys. Rev. Lett. 17, 1133 (1966).

[66] Jiilich Supercomputing Centre, JURECA: Modular supercom-
puter at Jilich Supercomputing Centre, J. Large-Scale Res.
Facilities 4, A132 (2018).

[67] K.-Y. Yang, T. M. Rice, and F.-C. Zhang, Phenomenological
theory of the pseudogap state, Phys. Rev. B 73, 174501 (2006).

033068-15



