000878063 001__ 878063
000878063 005__ 20220930130246.0
000878063 0247_ $$2doi$$a10.1016/j.jsb.2020.107579
000878063 0247_ $$2Handle$$a2128/25483
000878063 0247_ $$2altmetric$$aaltmetric:86235555
000878063 0247_ $$2pmid$$apmid:32693019
000878063 0247_ $$2WOS$$aWOS:000574936400006
000878063 037__ $$aFZJ-2020-02607
000878063 082__ $$a540
000878063 1001_ $$0P:(DE-Juel1)177870$$aBeckers, Maximilian$$b0$$eCorresponding author$$ufzj
000878063 245__ $$aPermutation testing of Fourier shell correlation for resolution estimation of cryo-EM maps
000878063 260__ $$aSan Diego, Calif.$$bElsevier$$c2020
000878063 3367_ $$2DRIVER$$aarticle
000878063 3367_ $$2DataCite$$aOutput Types/Journal article
000878063 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1597237224_4378
000878063 3367_ $$2BibTeX$$aARTICLE
000878063 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878063 3367_ $$00$$2EndNote$$aJournal Article
000878063 520__ $$aFourier shell correlation (FSC) has become a standard quantity for resolution estimation in electron cryo-microscopy. However, the resolution determination step is still subjective and not fully automated as it involves a series of map interventions before FSC computation and includes the selection of a common threshold. Here, we apply the statistical methods of permutation testing and false discovery rate (FDR) control to the resolution-dependent correlation measure. The approach allows fully automated and mask-free resolution determination based on statistical thresholding of FSC curves. We demonstrate the applicability for global, local and directional resolution estimation and show that the developed criterion termed FDR-FSC gives realistic resolution estimates based on statistical significance while eliminating the need of any map manipulations. The algorithms are implemented in a user-friendly GUI based software tool termed SPoC (https://github.com/MaximilianBeckers/SPOC).
000878063 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000878063 588__ $$aDataset connected to CrossRef
000878063 7001_ $$0P:(DE-Juel1)173949$$aSachse, Carsten$$b1$$eCorresponding author
000878063 773__ $$0PERI:(DE-600)1469822-5$$a10.1016/j.jsb.2020.107579$$gVol. 212, no. 1, p. 107579 -$$n1$$p107579 -$$tJournal of structural biology$$v212$$x1047-8477$$y2020
000878063 8564_ $$uhttps://juser.fz-juelich.de/record/878063/files/Invoice_OAD0000060994.pdf
000878063 8564_ $$uhttps://juser.fz-juelich.de/record/878063/files/1-s2.0-S1047847720301520-main.pdf$$yOpenAccess
000878063 8564_ $$uhttps://juser.fz-juelich.de/record/878063/files/Invoice_OAD0000060994.pdf?subformat=pdfa$$xpdfa
000878063 8564_ $$uhttps://juser.fz-juelich.de/record/878063/files/1-s2.0-S1047847720301520-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878063 8767_ $$8OAD0000060994$$92020-08-05$$d2020-08-06$$eHybrid-OA$$jZahlung erfolgt$$pYJSBI_JSB-20-60$$zBelegnr. 1200155364
000878063 909CO $$ooai:juser.fz-juelich.de:878063$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000878063 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177870$$aForschungszentrum Jülich$$b0$$kFZJ
000878063 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173949$$aForschungszentrum Jülich$$b1$$kFZJ
000878063 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000878063 9141_ $$y2020
000878063 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000878063 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000878063 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-17
000878063 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-17
000878063 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-17
000878063 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-01-17
000878063 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ STRUCT BIOL : 2018$$d2020-01-17
000878063 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000878063 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-17
000878063 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000878063 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-17
000878063 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878063 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-17
000878063 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-17
000878063 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-17
000878063 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000878063 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878063 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-17$$wger
000878063 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000878063 920__ $$lyes
000878063 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
000878063 980__ $$ajournal
000878063 980__ $$aVDB
000878063 980__ $$aUNRESTRICTED
000878063 980__ $$aI:(DE-Juel1)ER-C-3-20170113
000878063 980__ $$aAPC
000878063 9801_ $$aAPC
000878063 9801_ $$aFullTexts