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A B S T R A C T   

Fourier shell correlation (FSC) has become a standard quantity for resolution estimation in electron cryo-mi-
croscopy. However, the resolution determination step is still subjective and not fully automated as it involves a 
series of map interventions before FSC computation and includes the selection of a common threshold. Here, we 
apply the statistical methods of permutation testing and false discovery rate (FDR) control to the resolution- 
dependent correlation measure. The approach allows fully automated and mask-free resolution determination 
based on statistical thresholding of FSC curves. We demonstrate the applicability for global, local and directional 
resolution estimation and show that the developed criterion termed FDR-FSC gives realistic resolution estimates 
based on statistical significance while eliminating the need of any map manipulations. The algorithms are im-
plemented in a user-friendly GUI based software tool termed SPoC (https://github.com/MaximilianBeckers/ 
SPOC).   

1. Introduction 

Electron cryo-microscopy (cryo-EM) is becoming established as one of 
the methods of choice for macromolecular structure determination. The 
technique has undergone major improvements in hardware and software, 
allowing to determine 3D structures routinely at close-to-atomic resolution 
(Kühlbrandt et al., 2014; Bartesaghi et al., 2015; Weis et al., 2019). These 
resolutions provide the landmark features for atomic model building and 
the resulting atomic coordinates rationalize biological mechanism and 
function. At the core of all these developments are improvements in the 
resolvability of molecular detail that can be achieved. Therefore, the re-
solution is a reported value that makes the data comparable with other 
structural biology methods, and more importantly, gives guidance how 
confidently the density of a given feature in 3D space can be interpreted. 
Fourier shell correlation (FSC) curves are the standard metric for resolution 
estimation of cryo-EM maps. FSCs were originally introduced to the field of 
cryo-electron microscopy (Harauz and Van Heel, 1986) and more recently 
were also applied to related fields such as super-resolution microscopy 
(Nieuwenhuizen et al., 2013; Banterle et al., 2013). 

The FSC measures the correlation between Fourier coefficients within 

every resolution shell of two independently determined half-maps. A typical 
curve shows high correlations at low resolutions until it drops to zero at 
higher resolutions when noise starts to dominate the signal. In order to 
report a resolution value of structures based on FSC curves, a threshold 
value needs to be selected. A fixed threshold of 0.143 has been proposed 
(Rosenthal and Henderson, 2003), which is widely used for resolutions 
better than 10 Å when map features can be used to validate the obtained 
resolution. For lower resolutions, a more conservative 0.5 threshold has 
typically been used (Spahn et al., 2004). The 0.5 threshold is also favored 
when local FSCs within small windows are computed and local resolution is 
estimated (Cardone et al., 2013). Nevertheless, fixed value thresholds ig-
nore the effective number of independent Fourier coefficients in the re-
spective resolution shell (Van Heel and Schatz, 2005). This effect becomes 
particularly relevant at local resolution estimation with small window sizes 
(Cardone et al., 2013) and for 3D FSC with small number of Fourier pixels 
(Zi Tan et al., 2017). Alternatively, other criteria like (Saxton and 
Baumeister, 1982; Orlova et al., 1997) as well as the half-bit criterion have 
been proposed that compensate for these effects (Van Heel and Schatz, 
2005). More generally, applying thresholds such as the 0.143 and 0.5 cri-
teria are to be interpreted as identifying the highest resolution shell that still 
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has a certain signal-to-noise ratio (SNR) or information content present. 
As an alternative to fixed thresholds, -thresholds were proposed to 

provide cutoffs when the FSC exceeds random noise correlations 
(Saxton and Baumeister, 1982; Van Heel and Schatz, 2005). The 
curve gives a significance threshold level for every resolution shell to 
compare it with the correlation level. It is simply estimated as a func-
tion of voxels n r( )i in the Fourier shell with resolution ri by: 
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where nasym is the number of asymmetric volume units in the map, D the 

linear object size and L the size of the volume. However, statistics based 
on simple -thresholds suffer from several drawbacks as linking -levels 
to significance requires strict assumptions about the underlying corre-
lation distributions, which are usually not known. 

In order to get correct estimates of resolution-dependent informa-
tion measures of the molecular density within a 3D reconstruction, 
solvent noise needs to be removed or flattened from the volume, as big 
parts of the reconstructed structure correspond to solvent noise only 
and thus decreases the resolution values. Therefore, application of a 
user-defined mask that encloses the particle shape is critical to remove 
solvent noise, yet poses the danger of introducing artificial correlations. 
Often, this effect is compensated for by mask deconvolution (Chen 
et al., 2013). In practice, this correction approach still involves em-
pirical testing of several masks to improve the resolution while avoiding 
artificial correlations. The computation of the FSC in the absence of 
such a user-defined mask will be referred to as unmasked FSC 
throughout the manuscript. Although the calculation of unmasked and 
corrected FSC curves considering the molecular mass have been pro-
posed to circumvent this problem (Sindelar and Grigorieff, 2012), such 
an approach still requires the selection of an FSC threshold. Here, we 
propose an approach of FSC thresholding for resolution determination 

Fig. 1. Resolution estimation by permutation-based FDR-FSC. (a) Samples of random noise FSCs are generated by permuting Fourier coefficients in half-map 2, 
creating newly paired Fourier coefficients (1.). The resulting random noise FSC distribution for each resolution shell is used to estimate the significance, i.e. a p-value 
for the original FSC value of each resolution shell (2.). The resulting p-values per resolution shell are subjected to false discovery rate (FDR) control (3.). (b) 
Histograms of permuted and simulated FSC values of independent half-maps from the half-Nyquist resolution shell (1/4 pixel) together with the respective 3 cutoffs. 
(c) Comparison of the empirical cumulative distribution functions (ECDFs) in a zoomed view. The true distribution sampled by 5000 simulations of two noise maps 
and subsequent FSC calculation is shown (blue). The distribution obtained by the permutation approach is shown (red). ECDFs with standard deviations from the 
-threshold criteria are shown in blue (modified 3 criterion) and cyan (original 3 criterion). The true and the permutation-based distributions follow each other 

closely, especially at the tail of the distributions. Moreover, the modified 3 is closer to the simulated distribution than the original 3 .. 
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using a combination of permutation testing and p-value correction by 
false discovery rate (FDR) control. We show that the procedure is able 
to detect signal reliably over a wide range of noise levels that eliminates 
the need of solvent noise flattening. We validate the approach by 
comparing a large batch of structures with reported resolution values 
obtained from the EM databank and further extend the approach suc-
cessfully to challenging cases of local and directional resolution de-
termination. 

2. Results 

2.1. The procedure of permutation testing of Fourier shell correlations 

In order to circumvent principal and practical problems of thresh-
olding FSC curves, we developed a procedure for identifying the highest 
resolution shell of interpretable signal based on parameter-free per-
mutation sampling and subsequent statistical inference. Permutation 
tests are statistical procedures for estimating the distribution of a 
quantity of interest from the data itself and thus do not require any 
prior knowledge about the underlying distributions (Lehmann and 
Romano, 2005). Permutation sampling of the FSC for each resolution 
shell is straightforward: we generate new samples by changing the 
order of the Fourier coefficients of the second half-map shell and 
compute a large series of FSCs (Fig. 1a). By this approach, any pre- 
existing correlations between Fourier coefficients will be canceled and, 
therefore, yield a sample of the noise distribution of the FSC for each 
resolution shell. When applied to every resolution shell, the distribu-
tions together with the original FSC-values can then be statistically 
tested and conveniently transformed into p-values. This approach is 
invariant to the color of the noise as we sample every resolution shell 
independently and we do not impose any assumptions on the FSC dis-
tribution. When we test multiple resolution shells in parallel, there is a 
higher risk of falsely identifying resolution shells as significant, i.e. to 
make a false positive discovery, which is also known by the multiple 
testing problem in statistics. In order to reduce the risk of false positive 
errors, p-values are further corrected by means of FDR control 
(Benjamini and Hochberg, 1995) control and thresholded at 1%. We 
term this approach the FDR-FSC method of resolution determination. 

2.2. Permutation sampling of Fourier shell correlation coefficients 

In order to verify whether the permutation approach captures the 
principal distribution of Fourier correlations per shell, we simulated 
two pure noise reference half-maps with an average of 0 and a standard 
deviation of 1 and applied the permutation sampling as described. To 
assess the true distribution of Fourier correlations per shell, we simu-
lated 5000 noise half-maps (again with an average of 0 and a standard 
deviation of 1) and calculated FSC curves for each pair of 5000 half- 
maps. Comparison of the simulated with the permuted histograms 
generated from the FSC values of the half-Nyquist resolution shell (1/4 
pixel) and the corresponding empirical cumulative distribution func-
tions (ECDF) show that the distributions from the permutation ap-
proach and the simulation follow each other closely, including the tail 
of the distributions (Fig. 1b and c). Furthermore, we compared the 
standard deviations from the true simulation FSC distribution with the 
one based on the or modified criteria obtained from the two pure 
noise reference half-maps (Van Heel and Schatz, 2005). The or 
modified distributions yield systematic deviations of the true FSC 
distribution from the simulation whereas the permutation matches the 
FSC distribution from the simulation well. Next, we wanted to assess 
the performance over all resolution shells and plotted the right-sided 
10, 5.0, 1.0 and 0.15% cutoff values (percentiles) for each resolution 
shell. The percentiles of the distributions from the permutation and the 
simulation follow each other closely for both white (Supplementary 
Fig. 1a) and colored noise (Supplementary Fig. 1b). In order to assess 
whether signal present in maps affects the results of permutation 

sampling, we simulated three maps with increasing signal-to-noise ra-
tios of 0.3, 3.0 and 30. The ECDF between noise and signal-containing 
FSC distribution at half-Nyquist show that they match very closely re-
gardless of the presence of higher signal (Supplementary Fig. 2). 
Moreover, the percentiles of the FSC distributions of the entire set of 
Fourier shells confirm that increasing levels of signal over noise does 
not affect the permutation sampling. Together, the permutation ap-
proach is able to accurately sample the noise distribution of the FSC in 
the presence of signal as well in the absence of signal with both white 
and colored noise in the maps. The standard deviations computed from 
permutations are more accurate than the standard deviations obtained 
from the criteria. 

2.3. Resolution estimation using the FDR-FSC threshold 

Based on the proposed FDR-FSC approach, the resolution estimate 
will be assigned to the highest spatial frequency that contains sig-
nificant signal at 1% FDR (from now on referred to as FDR-FSC). For 
conventional FSC computation, the half-maps are masked by the user 
with a shape closely following the outline of the particle for the purpose 
of solvent flattening. In contrast, for the here proposed FDR-FSC ap-
proach the untreated half-maps are placed in the soft reconstruction 
sphere and directly used for FSC determination. Due to the well-known 
shape of the FSC curve, the resolution value will be assigned to the first 
resolution shell that crosses the significance threshold when progres-
sing along the FSC in reciprocal resolution (Fig. 2a). Comparison of the 
conventional 0.143 cutoff values thresholds for a -secretase map (Bai 
et al., 2015) (EMD3061) at 3.4 Å obtained in the presence of a user- 
defined mask with the 3.4 Å FDR-FSC value obtained in the absence of 
solvent flattening indicates a very similar resolution. Moreover, the 1% 
FDR threshold crosses the significance level two shells earlier than a 
simple p-value threshold of 1%. For a series of eight EM databank 
(EMDB) entries (EMD2677, EMD0587, EMD4589, EMD0043, 
EMD3061, EMD0415, EMD6287, EMD8908), we used the raw half- 
maps for FSC computation and assessed the influence of the chosen FDR 
threshold on the resolution measurement. As for commonly used sig-
nificance levels between 0.1 and 10% FDR, the estimated resolution is 
robust with respect to varying FDR thresholds (Supplementary Fig. 3a), 
we continue to use the 1% FDR threshold for the FDR-FSC resolution 
estimation. In order to test the influence of the p-value correction by 
FDR control, we also determined the resolution values using simple p- 
value thresholding to the above structure series of eight EMDB entries 
(Supplementary Fig. 3b). We observe that the final resolution cutoff 
changes only marginally within the first decimal place. To recapitulate 
the thresholding step in more detail, we plotted the sorted p-values and 
FDR controlled p-values derived from the FSCs of the human TFIIH core 
complex (EMD0587) and TMEM16 lipid scramblase (EMD4589) 
(Supplementary Fig. 3c). We find that FDR-control renders the p-values 
closer to a binary distribution of zeros and ones and therefore, mini-
mizes the number of resolution shells to be considered for significance 
discrimination. The thresholding can also be alternatively presented by 
a horizontal cutoff bar in the case of p-values or a cutoff line in the case 
of applied significance testing of FDR control thereby separating the 
significant p-values from the insignificant ones. The zoomed inset of the 
plot reveals that FDR controlled p-values is less dependent on the 
chosen cutoff value in comparison with the simple p-value threshold 
(Supplementary Fig. 3d). In order to make the thresholding of resolu-
tion based on permutation testing as robust as possible, we routinely 
correct p-values by FDR control and assign the resolution cutoff to the 
maximum resolution shell of a large continuous resolution band 
showing significant Fourier correlations. 

2.4. Effects of symmetry and reconstruction sphere on FSC permutation 
sampling 

Map processing operations like masking and symmetrization 
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applied to both half-maps lead to higher correlations between Fourier 
shells. These principal effects on the FSC computation with con-
sequences for threshold determination have been raised previously and 
were proposed to be compensated by correction factors (Van Heel and 
Schatz, 2005). Introduced dependencies between Fourier coefficients in 
a shell affect the distribution estimation of Fourier correlations by the 
outlined permutation approach. For example, when symmetry is ap-
plied to the image reconstruction, symmetry-related Fourier voxels will 
be correlated regardless of whether they contain signal or noise. When 
standard FSC permutation is performed with equally symmetrized half- 
maps, dependencies between Fourier coefficients will give rise to a 
narrower distribution of Fourier correlations than can really occur with 
such symmetrized half-maps. In statistics, such a configuration can be 
described by the reduced number of independent variables that are 
involved in a statistic or, in other words, the number of degrees of 
freedom of a system is decreased. Therefore, as the sample of Fourier 
corefficients behaves like a sample of smaller size, subsampling is re-
quired to better estimate the true variation of Fourier correlations per 
shell. 

In order to verify the requirement of permutation subsampling and 
identify the most efficient implementation, we tested 2-fold, 4-fold and 
10-fold rotationally averaged maps from the EMDB (EMD0408, 
EMD5778, EMD10924). First, we performed permutation of Fourier 
correlations of the complete shell resulting in the nominal sample size 
for reference computation. Second, in order to account for the reduced 
number of degrees of freedom, we limited permutation of Fourier cor-
relations per shell to the asymmetric unit, i.e. one half, quarter or tenth 
of the Fourier transform, respectively divided along the symmetry axis. 
Third, we reduced the number of degrees of freedom using random 
subsampling of the complete shell resulting in an effective sample size. 

In contrast to the nominal sample size, the effective sample size ap-
proach reduces the number of Fourier coefficients per shell used for 
permutation by the symmetry averaging factor, e.g. C4 symmetry has 
four asymmetric volume units and reduces the effective sampling to 1/4 
or 25% of the initial number of Fourier coefficients. For each permu-
tation approach, we plotted the resulting right-sided 10, 5.0, 1.0 and 
0.15% percentiles for each resolution shell (Supplementary Fig. 4). The 
resulting assessment of the distributions of Fourier correlations per 
shell shows that, as expected, when the complete shell is permuted the 
distribution is narrower than when limited to the asymmetric unit. This 
effect is more pronounced for higher degrees of symmetry such as C10. 
Notably, the percentiles obtained from permutation results by limiting 
the Fourier coefficients to the asymmetric unit and by effective sample 
sizes overlap very closely. The results show that random subsampling 
by effective sample sizes present a computationally efficient way to take 
into account dependencies between Fourier coefficients for the FSC 
permutation sampling approach. Effective sample sizes are commonly 
used in Monte Carlo simulations, a class of methods that the proposed 
permutation belongs to. As the number of degrees of freedom are re-
duced by introduced dependencies, effective sample sizes are used 
when the sample behaves like a sample with smaller size (Brooks et al., 
2011). Finally, the determined 1% FDR-FSC resolution results match 
the reported EMDB values closely: EMD0408 with C2 symmetry: 2.9 
(3.2 Å reported), EMD5778 with C4 symmetry: 3.5 (3.3 Å reported) and 
EMD10924 with C10 symmetry: 4.5 (4.4 Å reported). The latter test of 
the C10 symmetry also shows that when effective sample size correc-
tion is ignored, incorrect resolutions claiming better resolution than 
4.2 Å are obtained. Together, the results show that taking into account 
dependencies between Fourier coefficients used for FSC computation is 
important for the proposed permutation testing and can be efficiently 
implemented by effective sample size correction in the permutation 

Fig. 2. Effects of surrounding solvent noise on FDR-FSC and benchmarking resolution estimation using 77 maps from the EMDB. (a) Example of a Fourier shell 
correlation (FSC) curve for γ-scretase map (EMD3061) computed from two half-maps without solvent flattening. Resolutions shells with significant correlations 
beyond random fluctuations at 1% FDR-FSC are marked with red crosses and for a simple 1% p-value threshold with blue crosses. (b) Effect of removing solvent noise 
on FSC curve by decreasing window sizes in steps of 20 voxels and thereby incrementally excluding solvent. (c) Effect of removing solvent noise on resolution 
estimates at 0.143 FSC (blue) compared with 1% FDR-FSC (red). (d) Scatter plot of reported resolutions against resolutions determined by the 1% FDR-FSC method. 
Fitted line (R = 0.95) is shown in blue. For comparison, ideal correlation is shown in black. (e) Scatter plot of reported resolutions against unmasked 0.143 FSC 
values. (f) Two histograms of resolution differences of the 1% FDR-FSC (red) and the unmasked 0.143 cutoff with respect to the reported resolutions (blue). 
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procedure. 
Similar effects of introducing correlations between Fourier coeffi-

cients occur during the reconstruction procedure within a sphere. This 
step is equivalent to multiplication of the structure by a mask and 
corresponds to a convolution of the shape with the structure in Fourier 
space. Most reconstruction software programs already apply variants of 
such a spherical mask with approx. the diameter of the volume size to 
limit the structure to the reconstruction sphere. In order to introduce a 
constant effective sample size correction factor in our computation, we 
decided to place each structure inside the same reconstruction sphere. 
For this purpose, we designed a soft reconstruction sphere of volume 
dimension diameter including a Gaussian falloff of two voxel standard 
deviation. Unfortunately, it is not straightforward to derive an effective 
sample size for this map operation. Therefore, we estimated the effec-
tive sample size for the effect reconstruction sphere empirically by 
minimizing the deviation between the true distribution obtained from 
5000 noise half-maps (with reconstruction sphere applied) and the 
distribution calculated from two noise half-maps (with reconstruction 
sphere applied) by permutation including effective sample sizes. By 
systematically testing different effective sample sizes and computing 
the Kolmogrow-Smirnow distance of the two distributions (Massey, 
1951) (see Methods for more details), we found that our reconstruction 
sphere reduces the effective sample size to 70% of the initial sample 
size (Supplementary Fig. 5a). We also tested a common Hann window, 
as it is used for local resolution FSC (below), and identified 23% as the 
sample size correction factor (Supplementary Fig. 5b). The utility of 
effective sample sizes is demonstrated by the comparison of permuted 
and simulated percentiles using a series of different window sizes: the 
resulting percentile lines follow each other closely only when effective 
sample sizes are considered (Supplementary Figs. 6 and 7). It should be 
noted that the tests also show that the application of any user-defined 
mask for solvent flattening the structure of interest will affect permu-
tation sampling of the FDR-FSC procedure and is, therefore, not re-
commended in the absence of a mask-specific sample size correction 
factor. 

After assessing the cases of symmetry and reconstruction sphere 
with regards to sample size correction separately, in deposited half- 
maps containing symmetry, both effects on the effective sample sizes 
need to be considered. As a simple approximation, we combine both 
corrections, e.g. in case of C4 symmetry the effective sample size be-
comes 1/4 times 0.7 times the nominal sample size. In order verify the 
approach, we tested permutation-based sampling of two symmetry- 
imposed half-maps in the presence and absence of the effective sample 
sizes. In analogy to the test on the permutation approach above, we 
compared the permuted distributions with the ones obtained 5000 
noise symmetrized half-maps by plotting the 10, 5.0, 1.0 and 0.15 
percentiles as a function of spatial frequency. In the absence of any 
effective sampling size correction, the permuted distribution gives rise 
to tail probabilities that are too small in the presence of a D4 and D7 
symmetry. The combined effect of symmetry and reconstruction sphere, 
however, can be conservatively corrected by consideration of the ef-
fective sample size (Supplementary Fig. 8a and b). In conclusion, op-
erations that introduce additional correlations between half-maps such 
as volume symmetrization and reconstruction sphere require con-
sideration of reduced degrees of freedom for permutation by effective 
sample sizes. 

2.5. FDR-FSC estimation and surrounding solvent noise 

To test the sensitivity of the FDR-FSC approach with respect to 
noise, we successively reduced the size of the volume of the γ-secretase 
map (EMD3061) in steps of 20 voxels, thereby successively removing 
surrounding solvent noise. It is evident that FSC curves show higher 
correlations towards the Nyquist frequency as more solvent noise is 
removed (Fig. 2b). While the estimated resolution of 0.143 FSC 
threshold decreases from 4.1 Å to 3.7 Å (Fig. 2c), the 1% FDR threshold 

practically remains constant and only fluctuates at the second decimal 
digit. In order to validate this noise tolerance of the FDR-FSC approach, 
we simulated two noise-free reference half-maps of β-galactosidase 
(PDB ID 5a1a (Bartesaghi et al., 2015)) at 2.2 Å resolution at a pixel size 
of 0.637 Å and scaled their signal to a standard deviation of 1. Next, we 
added colored Gaussian noise to the half-maps including a B-factor 
falloff of 100 Å2 resulting in a final SNR of approx. 1.5 (Supplementary 
Fig. 9a). We computed the FSC and determined the resolution by the 
FDR-FSC approach (Supplementary Fig. 9b). To test the effect of addi-
tional solvent noise on the resolution determination, we increased the 
volume size from 300 to 700 pixels leading to a larger content of solvent 
noise in the map. In support of the results from the experimental γ- 
secretase map, we found that the resolutions obtained by the FDR-FSC 
criterion practically remain constant at 2.2 Å when increasing the sol-
vent content, whereas the resolutions obtained from the 0.143 FSC 
threshold are highly sensitive to the content of solvent noise in the map 
(Supplementary Fig. 9c) and thereby increase in numbers from 2.3 to 
3.3 Å. Taken together, the FDR-FSC criterion sensitively estimates re-
solution even in cases of large amounts of solvent noise present in the 
volume and therefore eliminates the need of solvent flattening of the 
half-maps by a user-defined mask. 

2.6. Performance comparison of FDR-FSC with common fixed threshold 
FSC resolution determination 

In order to benchmark the proposed algorithm, we compared the 
reported resolutions for a high-resolution and a low-resolution set of 
deposited half-maps from the EMDB. For the high-resolution compar-
ison, we used 77 reference half-maps with resolutions ranging from 1.6 
to 4.5 Å, determined the resolution using the FDR-FSC approach, which 
does not require any solvent flattening by a user-defined mask, and 
compared them with the reported resolutions. The scatter plot indicates 
high correlation (R = 0.95) between the 77 resolution estimates with 
the reported resolutions at the EMDB (Fig. 2d), while the 0.143 FSC 
threshold correlation deteriorates in the absence of solvent flattening 
due to the presence of solvent noise (Fig. 2e). The resolution differences 
to the reported EMDB resolutions are minimal in the case of 1% FDR- 
FSC whereas the differences to the reported resolutions for the 0.143 
threshold without any solvent flattening have a much higher median 
deviation of 0.5 Å (Fig. 2f, Supplementary Table 1). Although for lower- 
resolution structures, deposited half-maps are rare and resolutions are 
more difficult to validate based on the visible features, results of our 1% 
FDR-FSC procedure also show good agreement with the reported re-
solutions in such cases (Table 1). In conclusion, the determined re-
solution estimates using 1% FDR-FSC are in close agreement with 
previously reported resolution values from the EMDB and can be 
computed in a fully automated fashion without any free parameters that 
have to be optimized by the user. 

Table 1 
FDR-FSC resolution estimates of low-resolution maps.        

EMDB-ID Symmetry Reported in 
EMDB [Å] 

Pixel 
size [Å] 

0.143 
unmasked FSC 
[Å] 

1% FDR- 
FSC [Å]  

EMD9625 C1 6.78 2.64 7.71 6.48 
EMD9306 C1 7.5 1.32 9.39 8.05 
EMD9779 C1 16 2.24 16.87 11.03 
EMD4748 C2 5.14 0.85 6.07 5.0 
EMD0074 C1 18 5.24 31.44 21.68 
EMD0075 C1 21 5.24 31.44 21.68 
EMD0086 C1 14 2.62 20.96 13.1 
EMD0087 C1 16 2.62 32.25 23.29 
EMD20913 O 6.3 1.58 6.77 6.32 
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2.7. Application of FDR-FSC to local resolution estimation 

Cryo-EM maps usually exhibit local variations of resolutions and 
estimating local resolutions has become critical in order to evaluate the 
biological structures (Cardone et al., 2013; Kucukelbir et al., 2014; 
Vilas et al., 2018). We reasoned that the FDR-FSC thresholding ap-
proach could provide benefits over fixed FSC-threshold approaches. 
Therefore, we extended our approach by computing local FSC curves 
and tested it on cases with large resolution variations. In order to design 
a test for assessing local resolution determination, we simulated a 
composite map from -galactosidase (PDB ID 5a1a (Bartesaghi et al., 
2015)) of filtered subunits at resolutions of 2.0, 3.0, 4.0 and 5.0 Å, 
scaled the signal to a standard deviation of 1 and included additional 
Gaussian white noise (Supplementary Fig. 9d). Next, we computed the 
local FSC’s from overlapping cubes including a Hann window of half the 
cube dimension followed by permutation testing including the re-
spective sample size correction factor. Using local 1% FDR-FSC 
thresholding, we determined local resolutions measures at different 
noise levels that ranges in standard deviations between 0.5 and 1.5. In 
comparison, the commonly used 0.5 local FSC threshold shows stronger 
differences to the simulated resolutions at higher noise levels and tends 
to give lower resolutions in comparison with the 1% FDR-FSC threshold 
at low noise levels (Supplementary Fig. 9e). Application to an experi-
mental 3.4 Å γ-secretase map (Bai et al., 2015) (EMD3061) shows that 
the 1% FDR-FSC criterion assigns higher resolutions to the best-re-
solved core of the membrane protein when compared with the 0.5 FSC 
cutoff, while at the same time, lower resolutions between 10 and 15 Å 
are found at peripheral glycosylations and the detergent belt (Fig. 3a 
top left). Both observations can be supported by the available visual 
density features and are thus favorable for the 1% FDR-FSC resolution 
estimation method. An important aspect is the limited number of re-
solution shells included in the FSC computation due to the limited 
window size. In order to test the window size effect on the resolution, 
we computed the local resolutions by the 1% FSC-FDR as well as the 0.5 
local threshold FSC method of the experimental 3.4 Å -secretase map 
(Bai et al., 2015) (EMD3061) using increasing window sizes from 10 to 
50 pixels (Supplementary Fig. 10a). For very small windows (10 and 
15), we observe too high resolutions, presumably due to under-
sampling, whereas for windows larger than 20 pixels we observe con-
stant resolution values in the high-resolution transmembrane domain 
(Supplementary Fig. 10b left). Using a 0.5 FSC threshold, the resolution 
is estimated worse than expected at 3.8–4.0 Å, whereas the 1% FDR-FSC 
threshold yields a resolution of 3.4 Å, which is supported visually by the 
features of the cryo-EM density map. In the low-resolution region cor-
responding to the detergent micelle, however, the resolution with re-
spect to window size is difficult to assess by visual features. In principle, 
the window size needs to be sufficiently large to allow sampling of 
lower spatial frequencies. At same time, larger windows loose locality 
of resolution information and will include different resolution in-
formation from other map parts. In this case, the inclusion of the better 
resolved transmembrane region in the window explains why resolution 
gets better beyond sizes of 35 pixels (Supplementary Fig. 10b right). 
Taken together, for local resolution estimation using the FDR-FSC ap-
proach, the window size remains a free parameter that needs to be 
chosen as a compromise between locality of resolution information and 
sufficient sampling of lower spatial frequencies. 

Further comparisons with available software packages computing 
local resolution show that using standard settings applied to the γ-se-
cretase map, ResMap (Kucukelbir et al., 2014) assigns more optimistic 
resolutions, whereas MonoRes (Vilas et al., 2018) gives estimates of 
more conservative resolution (Fig. 3a right). The local resolution his-
togram of ResMap lacks a low-resolution peak from the detergent 
whereas MonoRes assigns too conservative estimates around 4–5 Å to 
the high-resolution parts, similar to 0.5 FSC (Fig. 3a bottom). The local 
resolution histograms show that the FSC methods cover both high and 
low-resolution features better than the other two approaches. 

Additional analyses of a 3.9 Å ATP synthase (Guo et al., 2019) 
(EMD9333) and a eukaryotic ribosome (Juszkiewicz et al., 2018) 
(EMD0194) map confirms this notion that the 1% FDR-FSC criterion is 
able to better resolve high-resolution differences compared with 0.5 
FSC and MonoRes (Fig. 3b and 3c). In these cases, the 1% FDR-FSC 
estimated resolution measures can be validated by visual features ap-
pearance such as the low-resolution L1-stalk domain > 7 Å and the 
clearly visible side-chain density of the α-helical segment at 3–4 Å. 
Despite the sensitivity to window sizes inherent to any local FSC de-
termination, the here presented 1% local FDR-FSC approach can ro-
bustly assign local resolution in cases of variable local noise levels 
within the map. 

2.8. Application of FDR-FSC to directional resolution estimation 

In addition to local resolutions, directional resolutions have been 
recently evaluated to assess the effect of preferred particle orientations 
(Zi Tan et al., 2017). In practice, the FSC curve from a conical 3D 
Fourier transform is calculated including voxels of a specified angle. In 
analogy to local resolution windows, due to the limited number of 
Fourier coefficients inside a conical volume, directional FSCs suffer 
from poor statistics and therefore the FDR-FSC approach could provide 
similar benefits as demonstrated in the case of local FSCs. We tested the 
approach in more detail using three different cases: a map of the soluble 
portion of the small influenza hemagglutinin (HA) trimer with highly 
preferred orientations (EMD8731, Fig. 4a and 4d) (Zi Tan et al., 2017), 
a highly symmetric apoferritin map (EMD0144, Fig. 4b) (Zivanov et al., 
2018) and an asymmetric map of γ-secretase (EMD3061, Fig. 4c) (Bai 
et al., 2015). Inspection of the directional resolution plots reveals that 
the 0.143 FSC-thresholds tend to give more optimistic resolution esti-
mates compared with the 1% FDR-FSC approach. This effect is more 
pronounced at lower resolutions. As a result, the 1% FDR-FSC criterion 
displays stronger resolution differences with lower resolutions up to 8 Å 
in the vertical direction and higher resolutions up to 4.2 Å in the hor-
izontal direction (Fig. 4a and 4c). Due to highly preferred orientations, 
such a result can be expected in this sample (Zi Tan et al., 2017). In 
contrast, the directional values derived by the 0.143 FSC threshold are 
not able to resolve the differences in directional resolution apparent in 
the HA map. For the 1.6 Å resolution map of apoferritin, clear direc-
tional resolution differences are not displayed due to high symmetry 
and homogenous particle orientations (Fig. 4b). Similarly, the asym-
metric map of γ-secretase only exhibits minor directional resolution 
differences (Fig. 4c). We attribute the larger detected resolution dif-
ferences by the FDR-FSC approach to the more sensitive resolution 
determination in analogy to the benefits observed for local resolution. 
In conclusion, FDR-FSC is suitable for local resolution determination as 
well as for directional resolution measurements as it estimates resolu-
tion at different noise levels more robustly in comparison with fixed 
threshold approaches. 

3. Discussion 

Resolution estimation is one of the essential tasks to assess the ex-
perimental quality and confidence for the interpretation of cryo-EM 
maps. Therefore, an automated procedure with least user input deli-
vering robust results is desirable. Here, we present an approach of 
thresholding of FSC curves by non-parametric permutation sampling 
followed by FDR control. Previously, the statistical FDR approach was 
applied to a very different type of problem of cryo-EM map thresh-
olding (Beckers et al., 2019). The FDR-FSC approach does not have any 
free parameters and only requires knowledge of the volume symmetry 
that is generally known from the 3D image reconstruction. This way, 
the approach enables sensitive resolution estimation without solvent 
flattening and thus eliminates the requirement of generating tight user- 
defined masks including the optional deconvolution process (Chen 
et al., 2013). Although mask-free approaches have been proposed 
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(Sindelar and Grigorieff, 2012), they require estimates of the expected 
molecular volume, which corresponds to information that may not be 
routinely available from the cryo-EM experiment in particular when 
heterogeneity is involved. Further application to local resolution esti-
mation showed that judged by visual map features the FDR-FSC method 
captures locally high-resolution features in the core of protein struc-
tures as well as lower resolution in the periphery of a protein complex. 
Complementary to local resolutions, directional FSCs can also be ana-
lyzed by FDR-FSC and resulted in well-estimated resolutions in cases of 
anisotropic reconstructions. The algorithm is implemented in a Python 
program that takes a few seconds for small maps (< 200 pixels volume 
size) up to a few minutes for big maps (> 400 pixels volume size). 

A conceptual advantage of the proposed FDR-FSC approach is that 
the method only assesses whether any significant correlations beyond 
random noise can be detected in a given resolution shell, which re-
presents a paradigm shift to the conventional resolution determination 
of using the FSC as an estimator of the spectral SNR. In this way, the 
FDR-FSC approach is very sensitive to signal and less affected by the 

presence of solvent noise (see Fig. 2) and therefore does not require any 
solvent flattening. In addition, inference of statistically significant 
signal in the resolution shells only requires the distribution of random 
Fourier correlations determined by permutation and does not require 
the consideration of complicated correlations between signal and noise 
(van Heel and Schatz, 2017). The permutation sampling of FSCs per 
resolution shell has the advantage that signal dependencies have little 
influence on determining the principal FSC distributions per shell. 
Therefore, under the assumption that noise is statistically independent 
from signal, permutation testing is straightforward. The experimentally 
measured FSC values per shell, however, are affected by introduced 
dependencies between Fourier coefficients inside a single resolution 
shell, which in turn changes the noise distribution of the FSC. Common 
volume operations such as symmetry or masking within the re-
construction sphere introduce such dependencies, and as a result the 
number of degrees of freedom are notably reduced and the true FSC 
distribution needs to be compensated for by subsampling. We im-
plemented this subsampling by the effective sample size to capture the 

Fig. 3. Application of FDR-FSC to local resolution estimation. (a) Comparison of local resolutions estimated for the γ-secretase map (EMD3061) by 1% FDR-FSC, 0.5 
FSC, ResMap and MonoRes grouped with corresponding resolution histograms below. (b) Surface mapped local resolutions determined using 1% FDR-FSC (left) of a 
3.9 Å map of a bacterial ATP synthase (EMD9333) compared with 0.5 FSC mapping (right). (c) Surface mapped local resolutions determined using 1% FDR-FSC of a 
3.8 Å map of a eukaryotic ribosome (EMD0194) compared with MonoRes mapping. 
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true FSC value distribution per shell in contrast to permutations if the 
nominal sample size was used. In addition, dependencies between half- 
maps are introduced by: mis-alignment of noisy particle images using 
masks, mis-alignment of noisy particle images with different signal 
components such as alternative conformations, interpolations inherent 
to the 3D reconstruction procedure and 3D alignment of determined 
half-maps. These contributions are currently not considered in our FSC 
permutation sampling as they are not easy to quantify and specific to 
the applied image processing pipeline. Commonly used image proces-
sing work-flows are working with generous and soft masks, separating 
different particle populations using classification, aligning particles by 
omitting high-resolution information or using independent half-set re-
finement in an attempt to minimize the introduction of such de-
pendencies between Fourier coefficients of half-maps. 

Once Fourier correlation distributions have been estimated, p-values 
of the measured FSC value for each resolution shell can be derived. 
Finally, FDR control of these p-values is followed by the thresholding 
step. Although our comparison with simple p-values shows only small 
differences in the determined resolution cutoffs, controlling the FDR 
adds to the robustness of the thresholding step. FDR control is a sta-
tistically well-established routine for identifying thresholds when 
multiple tests are performed simultaneously (Benjamini and Yekutieli, 
2001). The FDR control procedure automatically adjusts the effective p- 
value threshold to the number of available resolution shells. The con-
trolling procedure will have a stronger effect when evaluating very 
large box sizes in the presence of high noise levels and could, therefore, 
be more advantageous in challenging cases such as tomograms. Besides, 
it is not known that the FDR controlling procedure would introduce any 

drawbacks to the proposed permutation testing approach. An additional 
restraint to the thresholding step is imposed by limiting the resolution 
cutoff to the maximum spatial frequency of a large resolution band that 
shows continuous presence of significant signal. We want to stress, 
however, that the FDR-FSC approach, like any other FSC based ap-
proach, will only deliver reliable resolution estimates if half-maps with 
independent noise are provided (Cheng et al., 2015). For example, 
when wrong references are aligned against non-particle images (Mao 
et al., 2013) or incorrect symmetries imposed on the 3D reconstruction, 
the resulting half-maps will have correlated noise that can not be 
captured by the permutation approach. Moreover, excessive Fourier 
shell correlations arise from 3D structures of non-uniform orientation 
distribution, in which case directional resolution assessment should be 
consulted (see Fig. 4). Together, when independent half-maps from 
cryo-EM reconstructions are available, the FDR-FSC criterion provides 
robust resolution estimates for single-particle image reconstructions. 

When we applied FDR-FSC to local resolution estimation, the pro-
cedure shows improved detection of molecular detail over the com-
monly used 0.5 FSC cutoff or alternative approaches. We attribute this 
performance to the high sensitivity of signal in the presence of solvent 
noise. Nevertheless, for these calculations, the window size remains a 
free parameter that affects the obtained values of local resolutions re-
gardless of which thresholding procedure is being used (see  
Supplementary Fig. 10). This is a general property when local FSC 
calculations are computed and is independent from the respective 
threshold criterion as it is already elaborated in detail previously 
(Cardone et al., 2013). Irrespective of the window size, the here pre-
sented FDR-FSC method has advantages over 0.5 FSC, as it is less 

Fig. 4. Application of FDR-FSC to directional resolution estimation. Comparison of directional resolution plots of EMDB entries (a) hemagglutin trimer (EMD8731), 
(b) apoferritin (EMD0144) and (c) γ-secretase (EMD3061) for 0.143 FSC (left) and 1% FDR-FSC thresholds (right). Resolutions are shown in colors for the respective 
directions corresponding to angles of azimuth and elevation. (d) Directional resolutions mapped on the low-pass filtered surface of EMD8731. The resolution at each 
voxel specifies the resolution in the direction given by the vector from the center to the respective voxel (c.f. yellow arrows). Stronger directional resolution 
differences are reported using the 1% FDR-FSC measurement. 
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sensitive to differences in noise levels in the center and periphery of the 
protein that can affect the resolution determination. 

Given its sensitivity, robustness and minimal input requirements, it 
is conceivable that the proposed FDR-FSC approach can be used to re- 
evaluate many deposited EMDB structures when raw half-maps were 
available. In our evaluation, we found very good agreement between 
the reported resolution values, mostly based on the 0.143 FSC criterion 
including solvent flattening in the presence of a user-defined mask, and 
the FDR-FSC resolution values. This correlation shows that the over-
whelming majority of depositors submits their resolution value with 
care in correspondence to the presented visual features such as β-strand 
separation and side-chain densities. For future EMDB depositions, the 
FDR-FSC method could be used as an additional resolution assessment 
in the context of other standard validation tools. Due to the increased 
statistical robustness, we see particular use for extending resolution 
determination into more challenging applications such as local and 
directional resolution where resolution reporting is often critical for 
interpretation but technically less standardized. In the current manu-
script, we presented the FDR-FSC method with a focus on cryo-EM map 
evaluation. It has to be noted that the proposed framework is applicable 
to 2D Fourier ring correlations as used in super-resolution microscopy 
(Nieuwenhuizen et al., 2013). Due to the demonstrated ease of use and 
robustness, we anticipate a common applicability of the FDR-FSC 
method to image analysis and processing tools in and beyond the cryo- 
EM field. 

4. Methods 

4.1. Permutation sampling of Fourier shell correlation coefficients 

We consider Xri and Yri to be complex random variables and we 
denote the corresponding Fourier coefficients at the specific location ri, 
=i N1, , , in resolution shell r of half-map 1 and 2, where N is 
the number of Fourier coefficients in the respective shell. Due to Friedel 
symmetry, there are =n N 2 independent Fourier coefficients. 
Correlations between Xri and Yri are introduced by common signal at 
position ri, which we denote by S r( )i being identical in both half- 
maps. Thus, Fourier coefficients are usually modelled as 

= + = +X S r N r Y S r N r( ) ( )and ( ) ( )r i X i r i Y ii i (3) 

where N r( )X i and N r( )Y i are complex valued noise variables (Van Heel 
and Schatz, 2005). No assumptions about the distribution of the noise 
in resolution shell r are made. Furthermore, we denote by 

=X X X( , , )R r rn1 and similarly =Y Y Y( , , )R r rn1 the complete set of 
Fourier coefficients in the resolution shell with spatial frequency R. 

We design a statistical test that assesses whether there are sig-
nificant Fourier shell correlations beyond noise levels. Mathematically, 
for two half-maps that are aligned in register we test whether the 
Fourier coefficients in the respective resolution shell of half-map 1 are 
correlated with the Fourier coefficients of half-map 2 according to their 
location ri in Fourier space. Expressed in statistical terms: the null hy-
pothesis H0 is that Xri and Yri are uncorrelated, and the alternative 
hypothesis H1 is that there are significant correlations. These correla-
tions are typically measured by the Fourier shell correlation FSC , which 
is, using the Friedel symmetry inherent to Fourier transforms of real 
valued data, given as 
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and it becomes clear that FSC X Y( , )R R is a real valued random variable. 
Statistically, FSC X Y( , )R R is the estimator of the true value of the 
Fourier shell correlation, which we denote from now on by FSC. 

In order to test for significant correlations, we calculate a p-value as 
follows. The p-value p of the observed value of the Fourier shell cor-
relation, fsc, is then given as the probability that FSC is bigger than fsc

given the null hypothesis H0, i.e. 

=p FSC fsc H( | )0 (5)  

A permutation test is performed as follows. Under the null hy-
pothesis (see above), the Fourier coefficients Xri and Yri are uncorrelated 
for =i n1, , . Newly paired samples of Fourier coefficients can thus be 
generated by permutation of YR. Therefore, the sampled distribution is 
the distribution of the FSC under the null hypothesis, i.e. the noise 
distribution of the FSC . For a more detailed discussion regarding per-
mutation of correlation coefficients we refer to (DiCiccio and Romano, 
2017). From each generated sample, we then calculate the Fourier shell 
correlation, which results in a sample of FSC under the null hypothesis. 
Denoting Sn as the set of all permutations of n{1, , }, where n is the 
sample size as above, we calculate the p-value p by 

=p
n

FSC X Y fsc
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!
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S
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n (6) 

where {} denotes the indicator function, i.e. 
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As the number of possible permutations grows rapidly with the 
sample size, technically often just a random subset H Sn of all n!
permutations is used. Thus, p is replaced by its Monte-Carlo estimator 
pMC, given as 

=p
H

FSC X Y fsc
1

{ ( , ) },MC

H

R R( )

(8) 

where H| | is the cardinality of the set H , i.e. the number of permutations 
selected for the Monte-Carlo estimation. It is important to note that the 
distribution of the FSC under the null hypothesis, which we estimate by 
the permutation approach, is not necessarily the distribution of the FSC
in the absence of any signal. As we are permuting in the presence of 
possible signal, which adds additional variation, the permutation dis-
tribution of the FSC will have larger tail probabilities than the FSC
distribution without any signal. Consequently, this could give rise to 
more conservative resolution estimates. However, simulations of per-
mutation in the presence of signal at high and low signal-to-noise ratios 
showed that this effect seems to have less practical relevance 
(Supplementary Fig. 2). Moreover, the amount of signal in the most 
critical resolution shells close to the true resolution of the structure is 
low and will thus have limited influence on the actual distribution. As a 
compromise between computational efficiency and statistical accuracy, 
we restrict the number of permutations to a maximum of 1000. Per-
mutations are only performed for resolution shells with an effective 
sample size > 10, which allows for more than 1000 permutations. As 
the initial two resolution shells can have effective sample sizes smaller 
than 10 Fourier coefficients, they will not be sampled by permutation. 
In cases, when the following sampled resolution shells already drop 
below the significance level, the conservative 0.9 FSC threshold is used 
as the resolution cutoff of the volume. 

4.2. Multiple testing correction 

As we are testing the complete number of resolution shells sepa-
rately, there is a risk of obtaining positive tests accidentally simply 
because of the larger number of involved tests. This is commonly re-
ferred to as the multiple testing problem and requires the significance 
levels of the individual tests to be adjusted. With respect to FSC 
thresholding such a correction is important, as the number of tested 
resolution shells commonly varies from as low as 20 for windows of 
local resolution estimation to several hundred for complete maps. As a 
workaround to this problem, approaches that put individual sig-
nificance levels in the context of a global significance level have been 
proposed (Benjamini and Hochberg, 1995). In particular, the false 
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discovery rate (FDR) is a widely used approach for addressing the 
multiple testing problem. The FDR corresponds to the fraction of false 
positive tests when all positives are considered. In the here proposed 
approach, we apply the FDR by the Benjamini-Yekutieli procedure 
(Benjamini and Yekutieli, 2001). This implementation is known to 
control the FDR under arbitrary dependencies of the p-values. A more 
detailed treatment of the FDR control process including proofs of cor-
rectness is beyond the scope this manuscript and we refer the interested 
reader to the original reports (Benjamini and Hochberg, 1995; 
Benjamini and Yekutieli, 2001). 

4.3. Effects of symmetrization and masking 

As mentioned in the Results section, the reconstruction sphere or 
masking and symmetrization of the volumes lead to dependencies be-
tween Fourier coefficients and thus reduces the number of degrees of 
freedom. Due to dependencies, the sample behaves statistically like a 
sample of independent realizations of smaller size. In the field of Monte 
Carlo simulations this smaller sample size is typically referred to as the 
effective sample size neff . The effective sample size of imposed sym-
metry during reconstruction can be given as 

=n
n

n
eff

as (9) 

where n is the number of Fourier coefficients in the respective resolu-
tion shell and nas is the number asymmetric volume units at the given 
symmetry (Supplementary Fig. 4). Effective sample sizes are in-
corporated in the permutation framework by subsampling of Fourier 
coefficients in the respective shells. Effects of the reconstruction sphere 
or masking on the effective sample size are more complicated and de-
pend on the specific shape and volume of the mask. When the nominal 
sample size of the complete resolution shell is given by n, we estimate 
the effective sample size n neff by finding the factor (0, 1]

through minimization of the mean Kolmogorov-Smirnov distance D
over the resolution shells. The two-sample Kolmogorov-Smirnov dis-
tance (Massey, 1951), which we denote by D r, , is a measure of simi-
larity of two probability distributions. It is defined as the maximum 
difference between the two empirical cumulative distribution functions 
(ECDF). The ECDF itself specifies the fraction of samples that are 
smaller or equal to a specified value x , i.e. it estimates the cumulative 
probability of observing a sample smaller than x . In other words, the 
Kolmogorov-Smirnov distance specifies the maximum difference be-
tween these cumulative probabilities of two distributions that can be 
observed for any x . 

In our case for resolution shell r and with the effective sample size 
correction factor from above, the Kolmogorov-Smirnov distance is 
then given as: 

=D F x F xsup | ( ) ( )|,r x r sim r, [ 1,1] 1, , 2, , (10) 

where in our setting F x( )r1, , denotes the ECDF of the permutation 
approach of resolution shell r , which is estimated using an effective 
sample size N neff , and F x( )sim2, an estimate of the true cumulative 
distribution function of resolution shell r in the presence of the re-
spective mask. F x( )sim2, can be obtained by simulation of two noise 
maps, placed in the reconstruction sphere, and subsequent FSC calcu-
lation, followed by another simulation of such two maps with sub-
sequent FSC calculation and so forth. This allows sampling of the true 
distribution of the FSC when there are no correlations beyond random 
noise. D is then calculated as the mean of the Kolmogorov-Smirnov 
distance D r, over all the resolution shells r , i.e. 

=

=
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where m is the number of resolution shells. An estimate for is then 
given by 

= Darg min .(0,1] (12)  

In the presented algorithm, we apply a soft spherical mask of vo-
lume dimension diameter including a Gaussian falloff of two voxel 
standard deviation for global resolution estimation by default, because 
most half-maps already reside within a reconstruction sphere applied 
by the reconstruction software. The resulting effect can be corrected by 
an effective sample size of n n0.7eff , i.e. D was minimized for 0.7

(Supplementary Fig. 5a), which allows accurate calculation of tail 
probabilities for various box sizes (Supplementary Fig. 5,  
Supplementary Fig. 6). Application of windowing functions, as used for 
local resolution estimation (see below), also leads to dependencies si-
milar to masking, which have to be taken into account via effective 
sample sizes. In a similar way as for the soft circular mask, we found 
that a Hann-window leads to an effective sample size n n0.23eff

(Supplementary Fig. 5b, Supplementary Fig. 7). 

4.4. Local resolution estimation 

Local resolutions are estimated by a moving window across both 
half maps and subsequent calculation of local FSC thresholds (Cardone 
et al., 2013). In order to account for high-resolution artifacts introduced 
through spectral leakage, a Hann-function is used as a windowing 
function. The masking effects, which are introduced by the Hann 
window, are considered via effective sample sizes as described above. 
Moreover, effects of symmetry do not have any influence on the ef-
fective sample sizes when the size of the sliding windows is smaller than 
the size of the asymmetric volume unit in the map. In order to speed up 
the calculations, a step-size option is implemented allowing movement 
of the sliding window of more than a single voxel. Moreover, in order to 
avoid repeating permutations of the same map, the permutations are 
only performed at 10 random locations of the sliding window. The re-
sulting samples of the null distribution are merged and subsequently 
used for p-value calculation at all locations. Presented experiments 
were performed using a window size of 25 pixels. 

4.5. Directional resolution estimation 

The implementation of the directional resolution estimation follows 
Lyumkis and colleagues (Zi Tan et al., 2017). For each direction, the FSC is 
calculated by taking those voxels from each half-map that are included by a 
specified angle at the respective direction. This results in rotating an inverse 
cone over one half of the 3D Fourier transforms, thereby accounting for the 
Friedel symmetry, and calculating the FSC only from samples inside the 
inverse cone. In analogy to (Zi Tan et al., 2017), an angle of 20˚ was used for 
the presented experiments providing a good compromise between the 
number of Fourier coefficients per shell and the preservation of local di-
rectionality. Moreover, in analogy to local resolutions, locality of the di-
rectional resolution does not require the correction of symmetry effects. As 
implemented in the case of local resolution estimation, in order to accel-
erate the algorithm, the resolutions are only calculated for a limited set of 
directions and results are interpolated in order to avoid repetitive FSC 
calculations of overlapping cones. 

4.6. Software 

The procedures are implemented together with the previously 
published Confidence Map tools (Beckers et al., 2019) in a GUI based 
software named SPoC – Statistical Processing of cryo-EM maps 
(Supplementary Fig. 11). Code is written in Python3 based on NumPy 
(Van Der Walt et al., 2011), matplotlib (Hunter, 2007), SciPy (Oliphant, 
2007), mrcfile (Burnley et al., 2017) and parallelized by the Python 
multiprocessing module. The software is available at https://github. 
com/MaximilianBeckers/SPOC. Figures were prepared with UCSF 
Chimera (Pettersen et al., 2004). 
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