000878064 001__ 878064
000878064 005__ 20210118134536.0
000878064 0247_ $$2doi$$a10.1016/j.neubiorev.2020.07.001
000878064 0247_ $$2ISSN$$a0149-7634
000878064 0247_ $$2ISSN$$a1873-7528
000878064 0247_ $$2Handle$$a2128/26701
000878064 0247_ $$2altmetric$$aaltmetric:85758852
000878064 0247_ $$2pmid$$a32659287
000878064 0247_ $$2WOS$$aWOS:000557868200028
000878064 037__ $$aFZJ-2020-02608
000878064 082__ $$a610
000878064 1001_ $$0P:(DE-HGF)0$$aMorawetz, Carmen$$b0$$eCorresponding author
000878064 245__ $$aMultiple large-scale neural networks underlying emotion regulation
000878064 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000878064 3367_ $$2DRIVER$$aarticle
000878064 3367_ $$2DataCite$$aOutput Types/Journal article
000878064 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610368557_13913
000878064 3367_ $$2BibTeX$$aARTICLE
000878064 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878064 3367_ $$00$$2EndNote$$aJournal Article
000878064 520__ $$aRecent models suggest emotion generation, perception, and regulation rely on multiple, interacting large-scale brain networks. Despite the wealth of research in this field, the exact functional nature and different topological features of these neural networks remain elusive. Here, we addressed both using a well-established data-driven meta-analytic grouping approach. We applied k-means clustering to a large set of previously published experiments investigating emotion regulation (independent of strategy, goal and stimulus type) to segregate the results of these experiments into large-scale networks. To elucidate the functional nature of these distinct networks, we used functional decoding of metadata terms (i.e. task-level descriptions and behavioral domains). We identified four large-scale brain networks. The first two were related to regulation and functionally characterized by a stronger focus on response inhibition or executive control versus appraisal or language processing. In contrast, the second two networks were primarily related to emotion generation, appraisal, and physiological processes. We discuss how our findings corroborate and inform contemporary models of emotion regulation and thereby significantly add to the literature.Keywords: Distraction; Emotion regulation strategies; Neuroimaging; Reappraisal; Suppression; fMRI.
000878064 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000878064 588__ $$aDataset connected to CrossRef
000878064 7001_ $$0P:(DE-HGF)0$$aRiedel, Michael C.$$b1
000878064 7001_ $$0P:(DE-HGF)0$$aSalo, Taylor$$b2
000878064 7001_ $$0P:(DE-HGF)0$$aBerboth, Stella$$b3
000878064 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b4
000878064 7001_ $$0P:(DE-HGF)0$$aLaird, Angela R.$$b5
000878064 7001_ $$0P:(DE-Juel1)162407$$aKohn, Nils$$b6
000878064 773__ $$0PERI:(DE-600)1498433-7$$a10.1016/j.neubiorev.2020.07.001$$gVol. 116, p. 382 - 395$$p382 - 395$$tNeuroscience & biobehavioral reviews$$v116$$x0149-7634$$y2020
000878064 8564_ $$uhttps://juser.fz-juelich.de/record/878064/files/ER_Networks_Ver14Morawetz%20oW.pdf$$yPublished on 2020-07-11. Available in OpenAccess from 2021-07-11.$$zStatID:(DE-HGF)0510
000878064 8564_ $$uhttps://juser.fz-juelich.de/record/878064/files/Morawetz.pdf$$yRestricted
000878064 909CO $$ooai:juser.fz-juelich.de:878064$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878064 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b4$$kFZJ
000878064 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000878064 9141_ $$y2020
000878064 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-26
000878064 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-26
000878064 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-26
000878064 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-26
000878064 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000878064 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878064 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROSCI BIOBEHAV R : 2018$$d2020-08-26
000878064 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-26
000878064 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-26
000878064 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-26
000878064 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-26
000878064 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROSCI BIOBEHAV R : 2018$$d2020-08-26
000878064 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2020-08-26
000878064 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-26
000878064 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-26$$wger
000878064 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-26
000878064 920__ $$lyes
000878064 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000878064 980__ $$ajournal
000878064 980__ $$aVDB
000878064 980__ $$aUNRESTRICTED
000878064 980__ $$aI:(DE-Juel1)INM-7-20090406
000878064 9801_ $$aFullTexts