001     878067
005     20220930130246.0
024 7 _ |a 10.1002/nbm.4361
|2 doi
024 7 _ |a 0952-3480
|2 ISSN
024 7 _ |a 1099-1492
|2 ISSN
024 7 _ |a 2128/25662
|2 Handle
024 7 _ |a altmetric:86326385
|2 altmetric
024 7 _ |a pmid:32696547
|2 pmid
024 7 _ |a WOS:000550643600001
|2 WOS
037 _ _ |a FZJ-2020-02609
082 _ _ |a 610
100 1 _ |a Worthoff, Wieland A.
|0 P:(DE-Juel1)156200
|b 0
|e Corresponding author
245 _ _ |a Relaxometry and quantification in sodium MRI of cerebral gliomas: A FET‐PET and MRI small‐scale study
260 _ _ |a New York, NY
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599845022_443
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Sodium MRI is a promising method for assessing the metabolic properties of brain tumours. In a recent study, a strong relationship between semi‐quantitative abnormalities in sodium MRI and the mutational status of the isocitrate dehydrogenase enzyme (IDH) with untreated cerebral gliomas was observed. Here, sodium relaxometry in brain tumour tissue was investigated in relation to molecular markers in order to reveal quantitative sodium tissue parameters and the differences between healthy tissue and brain tumour. The previous semi‐quantitative approach is extended by use of suitable relaxometry methods accompanied by numerical simulation to achieve detailed quantitative analysis of intra‐ and extracellular sodium concentration using an enhanced SISTINA sequence at 4 T. Using optimised techniques, biexponential sodium relaxation times in tumour (T* 2f, T* 2s) and in healthy contralateral brain tissue (T* 2f,CL, T* 2s,CL) were estimated in 10 patients, along with intracellular sodium molar fractions (χ, χCL), volume fractions (η, ηCL) and concentrations (ρin, ρin,CL). The total sodium tissue concentrations (ρT, ρT,CL) were also estimated. The ratios T *2f/T *2f,CL (P = .05), η/ηCL (P = .02) and χ/χCL (P = .02) were significantly lower in IDH mutated than in IDH wildtype gliomas (n = 4 and n = 5 patients, respectively). The Wilcoxon rank‐sum test was used to compare sodium MRI parameters in patients with and without IDH mutation. Thus, quantitative analysis of relaxation rates, intra‐ and extracellular sodium concentrations, intracellular molar and volume fractions based on enhanced SISTINA confirmed a relationship between abnormalities in sodium parameters and the IDH mutational status in cerebral gliomas, hence catering for the potential to provide further insights into the status of the disease.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Shymanskaya, Aliaksandra
|0 P:(DE-Juel1)167471
|b 1
700 1 _ |a Lindemeyer, Johannes
|0 P:(DE-Juel1)131657
|b 2
|u fzj
700 1 _ |a Langen, Karl‐Josef
|0 P:(DE-Juel1)131777
|b 3
700 1 _ |a Shah, N. Jon
|0 P:(DE-Juel1)131794
|b 4
|u fzj
773 _ _ |a 10.1002/nbm.4361
|0 PERI:(DE-600)2002003-X
|n 10
|p e4361
|t NMR in biomedicine
|v 33
|y 2020
|x 1099-1492
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878067/files/nbm.4361.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/878067/files/nbm.4361.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878067
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156200
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131657
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-02-26
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NMR BIOMED : 2018
|d 2020-02-26
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-26
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21