000878070 001__ 878070
000878070 005__ 20220930130246.0
000878070 0247_ $$2doi$$a10.1371/journal.pcbi.1007417
000878070 0247_ $$2ISSN$$a1553-734X
000878070 0247_ $$2ISSN$$a1553-7358
000878070 0247_ $$2Handle$$a2128/25533
000878070 0247_ $$2altmetric$$aaltmetric:84675367
000878070 0247_ $$2pmid$$apmid:32579554
000878070 0247_ $$2WOS$$aWOS:000558077600003
000878070 037__ $$aFZJ-2020-02612
000878070 082__ $$a610
000878070 1001_ $$0P:(DE-Juel1)174346$$aRosenbauer, Jakob$$b0
000878070 245__ $$aModeling of Wnt-mediated tissue patterning in vertebrate embryogenesis
000878070 260__ $$aSan Francisco, Calif.$$bPublic Library of Science$$c2020
000878070 3367_ $$2DRIVER$$aarticle
000878070 3367_ $$2DataCite$$aOutput Types/Journal article
000878070 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1597740454_12926
000878070 3367_ $$2BibTeX$$aARTICLE
000878070 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878070 3367_ $$00$$2EndNote$$aJournal Article
000878070 520__ $$aDuring embryogenesis, morphogens form a concentration gradient in responsive tissue, which is then translated into a spatial cellular pattern. The mechanisms by which morphogens spread through a tissue to establish such a morphogenetic field remain elusive. Here, we investigate by mutually complementary simulations and in vivo experiments how Wnt morphogen transport by cytonemes differs from typically assumed diffusion-based transport for patterning of highly dynamic tissue such as the neural plate in zebrafish. Stochasticity strongly influences fate acquisition at the single cell level and results in fluctuating boundaries between pattern regions. Stable patterning can be achieved by sorting through concentration dependent cell migration and apoptosis, independent of the morphogen transport mechanism. We show that Wnt transport by cytonemes achieves distinct Wnt thresholds for the brain primordia earlier compared with diffusion-based transport. We conclude that a cytoneme-mediated morphogen transport together with directed cell sorting is a potentially favored mechanism to establish morphogen gradients in rapidly expanding developmental systems.
000878070 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000878070 536__ $$0G:(DE-Juel1)hkf6_20170901$$aForschergruppe Schug (hkf6_20170901)$$chkf6_20170901$$fForschergruppe Schug$$x1
000878070 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x2
000878070 588__ $$aDataset connected to CrossRef
000878070 7001_ $$00000-0003-1539-0593$$aZhang, Chengting$$b1
000878070 7001_ $$00000-0001-5286-9347$$aMattes, Benjamin$$b2
000878070 7001_ $$0P:(DE-HGF)0$$aReinartz, Ines$$b3
000878070 7001_ $$00000-0002-8109-2765$$aWedgwood, Kyle$$b4
000878070 7001_ $$00000-0003-1028-3115$$aSchindler, Simone$$b5
000878070 7001_ $$0P:(DE-HGF)0$$aSinner, Claude$$b6
000878070 7001_ $$00000-0002-4903-9657$$aScholpp, Steffen$$b7$$eCorresponding author
000878070 7001_ $$0P:(DE-Juel1)173652$$aSchug, Alexander$$b8$$eCorresponding author
000878070 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1007417$$gVol. 16, no. 6, p. e1007417 -$$n6$$pe1007417 -$$tPLoS Computational Biology$$v16$$x1553-7358$$y2020
000878070 8564_ $$uhttps://juser.fz-juelich.de/record/878070/files/June%202020%20Invoice-%20PAB303116.pdf
000878070 8564_ $$uhttps://juser.fz-juelich.de/record/878070/files/Mail_PLOS_Invoice_PAB303116_per_Deposit.pdf
000878070 8564_ $$uhttps://juser.fz-juelich.de/record/878070/files/June%202020%20Invoice-%20PAB303116.pdf?subformat=pdfa$$xpdfa
000878070 8564_ $$uhttps://juser.fz-juelich.de/record/878070/files/journal.pcbi.1007417-1.pdf$$yOpenAccess
000878070 8564_ $$uhttps://juser.fz-juelich.de/record/878070/files/journal.pcbi.1007417-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878070 8564_ $$uhttps://juser.fz-juelich.de/record/878070/files/Mail_PLOS_Invoice_PAB303116_per_Deposit.pdf?subformat=pdfa$$xpdfa
000878070 8767_ $$8PAB303116$$92020-07-02$$d2020-08-04$$eAPC$$jDeposit$$lDeposit: PLoS$$pPCOMPBILD- 19-01606$$zDoch über Deposit gebucht! 350 USD, Credit für nächste Invoice Belegnr. 1200155272
000878070 909CO $$ooai:juser.fz-juelich.de:878070$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000878070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174346$$aForschungszentrum Jülich$$b0$$kFZJ
000878070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173652$$aForschungszentrum Jülich$$b8$$kFZJ
000878070 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000878070 9141_ $$y2020
000878070 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878070 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-05
000878070 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-05
000878070 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-05
000878070 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-05
000878070 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-05
000878070 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS COMPUT BIOL : 2018$$d2020-01-05
000878070 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-05
000878070 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-05
000878070 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-05
000878070 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-05
000878070 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-05
000878070 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-05
000878070 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878070 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-05
000878070 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-05
000878070 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-05
000878070 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-05
000878070 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-05
000878070 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-05
000878070 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000878070 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000878070 980__ $$ajournal
000878070 980__ $$aVDB
000878070 980__ $$aI:(DE-Juel1)JSC-20090406
000878070 980__ $$aI:(DE-Juel1)NIC-20090406
000878070 980__ $$aAPC
000878070 980__ $$aUNRESTRICTED
000878070 9801_ $$aAPC
000878070 9801_ $$aFullTexts