000878071 001__ 878071
000878071 005__ 20210130005351.0
000878071 0247_ $$2doi$$a10.3390/hydrology7030043
000878071 0247_ $$2Handle$$a2128/25418
000878071 0247_ $$2WOS$$aWOS:000580133600001
000878071 0247_ $$2altmetric$$aaltmetric:87981387
000878071 037__ $$aFZJ-2020-02613
000878071 082__ $$a550
000878071 1001_ $$0P:(DE-HGF)0$$aIdrissou, Mouhamed$$b0
000878071 245__ $$aTesting the Robustness of a Physically-Based Hydrological Model in Two Data Limited Inland Valley Catchments in Dano, Burkina Faso
000878071 260__ $$aBasel$$bMDPI$$c2020
000878071 3367_ $$2DRIVER$$aarticle
000878071 3367_ $$2DataCite$$aOutput Types/Journal article
000878071 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596198401_12544
000878071 3367_ $$2BibTeX$$aARTICLE
000878071 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878071 3367_ $$00$$2EndNote$$aJournal Article
000878071 520__ $$aThis study investigates the robustness of the physically-based hydrological model WaSiM (water balance and flow simulation model) for simulating hydrological processes in two data sparse small-scale inland valley catchments (Bankandi-Loffing and Mebar) in Burkina Faso. An intensive instrumentation with two weather stations, three rain recorders, 43 piezometers, and one soil moisture station was part of the general effort to reduce the scarcity of hydrological data in West Africa. The data allowed us to successfully parameterize, calibrate (2014–2015), and validate (2016) WaSiM for the Bankandi-Loffing catchment. Good model performance concerning discharge in the calibration period (R2 = 0.91, NSE = 0.88, and KGE = 0.82) and validation period (R2 = 0.82, NSE = 0.77, and KGE = 0.57) was obtained. The soil moisture (R2 = 0.7, NSE = 0.7, and KGE = 0.8) and the groundwater table (R2 = 0.3, NSE = 0.2, and KGE = 0.5) were well simulated, although not explicitly calibrated. The spatial transposability of the model parameters from the Bankandi-Loffing model was investigated by applying the best parameter-set to the Mebar catchment without any recalibration. This resulted in good model performance in 2014–2015 (R2 = 0.93, NSE = 0.92, and KGE = 0.84) and in 2016 (R2 = 0.65, NSE = 0.64, and KGE = 0.59). This suggests that the parameter-set achieved in this study can be useful for modeling ungauged inland valley catchments in the region. The water balance shows that evaporation is more important than transpiration (76% and 24%, respectively, of evapotranspiration losses) and the surface flow is very sensitive to the observed high interannual variability of rainfall. Interflow dominates the uplands, but base flow is the major component of stream flow in inland valleys. This study provides useful information for the better management of soil and scarce water resources for smallholder farming in the area
000878071 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000878071 588__ $$aDataset connected to CrossRef
000878071 7001_ $$00000-0001-9234-7850$$aDiekkrüger, Bernd$$b1$$eCorresponding author
000878071 7001_ $$00000-0001-6504-0482$$aTischbein, Bernhard$$b2
000878071 7001_ $$0P:(DE-HGF)0$$aIbrahim, Boubacar$$b3
000878071 7001_ $$00000-0003-3879-8153$$aYira, Yacouba$$b4
000878071 7001_ $$0P:(DE-HGF)0$$aSteup, Gero$$b5
000878071 7001_ $$0P:(DE-Juel1)177794$$aPoméon, Thomas$$b6
000878071 773__ $$0PERI:(DE-600)2777964-6$$a10.3390/hydrology7030043$$gVol. 7, no. 3, p. 43 -$$n3$$p43 -$$tHydrology$$v7$$x2306-5338$$y2020
000878071 8564_ $$uhttps://juser.fz-juelich.de/record/878071/files/hydrology-07-00043.pdf$$yOpenAccess
000878071 8564_ $$uhttps://juser.fz-juelich.de/record/878071/files/hydrology-07-00043.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878071 909CO $$ooai:juser.fz-juelich.de:878071$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000878071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177794$$aForschungszentrum Jülich$$b6$$kFZJ
000878071 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000878071 9141_ $$y2020
000878071 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-03
000878071 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878071 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-03
000878071 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-01-03
000878071 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-03
000878071 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-03
000878071 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878071 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-03
000878071 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-03
000878071 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-03
000878071 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-03
000878071 920__ $$lyes
000878071 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000878071 980__ $$ajournal
000878071 980__ $$aVDB
000878071 980__ $$aUNRESTRICTED
000878071 980__ $$aI:(DE-Juel1)IBG-3-20101118
000878071 9801_ $$aFullTexts