000878073 001__ 878073
000878073 005__ 20240709081928.0
000878073 0247_ $$2doi$$a10.1016/j.apenergy.2020.116191
000878073 0247_ $$2ISSN$$a0306-2619
000878073 0247_ $$2ISSN$$a1872-9118
000878073 0247_ $$2Handle$$a2128/27177
000878073 0247_ $$2WOS$$aWOS:000613288200008
000878073 037__ $$aFZJ-2020-02615
000878073 082__ $$a620
000878073 1001_ $$0P:(DE-Juel1)171395$$aZou, Wei$$b0$$eCorresponding author
000878073 245__ $$aWorking Zone for a Least Squares Support Vector Machine in the Modeling of Polymer Electrolyte Fuel Cell Voltage
000878073 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000878073 3367_ $$2DRIVER$$aarticle
000878073 3367_ $$2DataCite$$aOutput Types/Journal article
000878073 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1613481218_22800
000878073 3367_ $$2BibTeX$$aARTICLE
000878073 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878073 3367_ $$00$$2EndNote$$aJournal Article
000878073 520__ $$aThe least squares support vector machine method has been successfully applied to modeling the transient behavior of polymer electrolyte fuel cells; this paper analyzes the credibility and definition of its reliable working zone when dealing with multiple load changes. The transient model based on the least squares support vector machine is initially established. Then, the effects of the fuel cell system’s setup and exterior load behavior on the transient model are investigated. Artificial data from experimentally-validated Simulink simulations are used, by which extreme working conditions could be taken into account. We found that the fuel cell system’s setup with intensive sampling brings about better model performance than that with a sparse sampling interval, as sharp peaks are well characterized when intensive sampling is applied and more information on the fuel cell system is provided to the transient model. Furthermore, the performance of the transient model is better when smoother load changes are imposed on the system, and so a large ramp time and small ramp value are preferable. A working zone for a least squares support vector machine to model polymer electrolyte fuel cell is defined, for which an absolute error is used. Based on the acceptable level of error in the fuel cell system, a set of feasible combinations of its setup and exterior load changes is regulated. Accuracy in the transient model is achieved when the fuel cell runs within the working domain.
000878073 536__ $$0G:(DE-HGF)POF4-123$$a123 - Chemische Energieträger (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000878073 588__ $$aDataset connected to CrossRef
000878073 7001_ $$0P:(DE-Juel1)5106$$aFroning, Dieter$$b1
000878073 7001_ $$0P:(DE-Juel1)171458$$aShi, Yan$$b2
000878073 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b3
000878073 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2020.116191$$gVol. 283, p. 116191 -$$p116191 -$$tApplied energy$$v283$$x0306-2619$$y2021
000878073 8564_ $$uhttps://juser.fz-juelich.de/record/878073/files/Zou_Wei_Working%20zone%20for%20a%20least-square%20supoort%20vector%20machine%20for%20modeling%20polymer%20elctrolyte%20fuel%20cell%20voltage.pdf$$yPublished on 2020-12-01. Available in OpenAccess from 2022-12-01.
000878073 909CO $$ooai:juser.fz-juelich.de:878073$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878073 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171395$$aForschungszentrum Jülich$$b0$$kFZJ
000878073 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)171395$$aRWTH Aachen$$b0$$kRWTH
000878073 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5106$$aForschungszentrum Jülich$$b1$$kFZJ
000878073 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171458$$aForschungszentrum Jülich$$b2$$kFZJ
000878073 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b3$$kFZJ
000878073 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b3$$kRWTH
000878073 9130_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000878073 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000878073 9141_ $$y2021
000878073 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000878073 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000878073 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-12
000878073 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-12
000878073 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000878073 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878073 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2018$$d2020-01-12
000878073 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000878073 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-12
000878073 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000878073 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-12
000878073 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2018$$d2020-01-12
000878073 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-12
000878073 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000878073 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000878073 920__ $$lyes
000878073 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000878073 9801_ $$aFullTexts
000878073 980__ $$ajournal
000878073 980__ $$aVDB
000878073 980__ $$aUNRESTRICTED
000878073 980__ $$aI:(DE-Juel1)IEK-14-20191129
000878073 981__ $$aI:(DE-Juel1)IET-4-20191129